Cluster Alignment With Target Knowledge Mining for Unsupervised Domain Adaptation Semantic Segmentation

Unsupervised domain adaptation (UDA) carries out knowledge transfer from the labeled source domain to the unlabeled target domain. Existing feature alignment methods in UDA semantic segmentation achieve this goal by aligning the feature distribution between domains. However, these feature alignment...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 09., Seite 7403-7418
1. Verfasser: Wang, Shuang (VerfasserIn)
Weitere Verfasser: Zhao, Dong, Zhang, Chi, Guo, Yuwei, Zang, Qi, Gu, Yu, Li, Yi, Jiao, Licheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM349308241
003 DE-627
005 20250304034856.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3222634  |2 doi 
028 5 2 |a pubmed25n1164.xml 
035 |a (DE-627)NLM349308241 
035 |a (NLM)36417726 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shuang  |e verfasserin  |4 aut 
245 1 0 |a Cluster Alignment With Target Knowledge Mining for Unsupervised Domain Adaptation Semantic Segmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation (UDA) carries out knowledge transfer from the labeled source domain to the unlabeled target domain. Existing feature alignment methods in UDA semantic segmentation achieve this goal by aligning the feature distribution between domains. However, these feature alignment methods ignore the domain-specific knowledge of the target domain. In consequence, 1) the correlation among pixels of the target domain is not explored; and 2) the classifier is not explicitly designed for the target domain distribution. To conquer these obstacles, we propose a novel cluster alignment framework, which mines the domain-specific knowledge when performing the alignment. Specifically, we design a multi-prototype clustering strategy to make the pixel features within the same class tightly distributed for the target domain. Subsequently, a contrastive strategy is developed to align the distributions between domains, with the clustered structure maintained. After that, a novel affinity-based normalized cut loss is devised to learn task-specific decision boundaries. Our method enhances the model's adaptability in the target domain, and can be used as a pre-adaptation for self-training to boost its performance. Sufficient experiments prove the effectiveness of our method against existing state-of-the-art methods on representative UDA benchmarks 
650 4 |a Journal Article 
700 1 |a Zhao, Dong  |e verfasserin  |4 aut 
700 1 |a Zhang, Chi  |e verfasserin  |4 aut 
700 1 |a Guo, Yuwei  |e verfasserin  |4 aut 
700 1 |a Zang, Qi  |e verfasserin  |4 aut 
700 1 |a Gu, Yu  |e verfasserin  |4 aut 
700 1 |a Li, Yi  |e verfasserin  |4 aut 
700 1 |a Jiao, Licheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 09., Seite 7403-7418  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:09  |g pages:7403-7418 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3222634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 09  |h 7403-7418