|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349308012 |
003 |
DE-627 |
005 |
20231226042317.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202208484
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1164.xml
|
035 |
|
|
|a (DE-627)NLM349308012
|
035 |
|
|
|a (NLM)36417702
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Usselmann, Michael
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Switchable Polyacrylonitrile-Copolymer for Melt-Processing and Thermal Carbonization-3D Printing of Carbon Supercapacitor Electrodes with High Capacitance
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.02.2023
|
500 |
|
|
|a Date Revised 10.02.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Polyacrylonitrile (PAN) represents the most widely used precursor for carbon fibers and carbon materials. Carbon materials stand out with their high mechanical performance, but they also show excellent electrical conductivity and high surface area. These properties render carbon materials suitable as electrode material for fuel cells, batteries, and supercapacitors. However, PAN has to be processed from solution before being thermally converted to carbon, limiting its final format to fibers, films, and non-wovens. Here, a PAN-copolymer with an intrinsic plasticizer is presented to reduce the melting temperature and avoid undesired entering of the thermal carbonization regime. This plasticizer enables melt extrusion-based additive manufacturing (EAM). The plasticizer in the PAN-copolymer can be switched to increase the melting temperature after processing, allowing the 3D-melt-printed workpiece to be thermally carbonized after EAM. Melt-processing of the PAN copolymer extends the freedom-in-design of carbon materials to mold-free rapid prototyping, in the absence of solvents, which enables more economic and sustainable manufacturing processes. As an example for the capability of this material system, open meshed carbon electrodes are printed for supercapacitors that are metal- and binder-free with an optimized thickness of 1.5 mm and a capacitance of up to 387 mF cm-2
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a active carbon
|
650 |
|
4 |
|a extrusion-based additive manufacturing-printing
|
650 |
|
4 |
|a polyacrylonitrile
|
650 |
|
4 |
|a rapid prototyping
|
650 |
|
4 |
|a supercapacitors
|
700 |
1 |
|
|a Bansmann, Joachim
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuehne, Alexander J C
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 6 vom: 06. Feb., Seite e2208484
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:6
|g day:06
|g month:02
|g pages:e2208484
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202208484
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 6
|b 06
|c 02
|h e2208484
|