PatchMix Augmentation to Identify Causal Features in Few-Shot Learning

The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite exten...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 21. Juni, Seite 7639-7653
1. Verfasser: Xu, Chengming (VerfasserIn)
Weitere Verfasser: Liu, Chen, Sun, Xinwei, Yang, Siqian, Wang, Yabiao, Wang, Chengjie, Fu, Yanwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM349229929
003 DE-627
005 20231226042129.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3223784  |2 doi 
028 5 2 |a pubmed24n1164.xml 
035 |a (DE-627)NLM349229929 
035 |a (NLM)36409816 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Chengming  |e verfasserin  |4 aut 
245 1 0 |a PatchMix Augmentation to Identify Causal Features in Few-Shot Learning 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario. The utility of our method is demonstrated on the state-of-the-art results consistently achieved on several benchmarks including miniImageNet, tieredImageNet, CIFAR-FS, CUB, Cars, Places and Plantae, in all settings of single-domain, cross-domain and unsupervised FSL. By studying the intra-variance property of learned features and visualizing the learned features, we further quantitatively and qualitatively show that such a promising result is due to the effectiveness in learning causal features 
650 4 |a Journal Article 
700 1 |a Liu, Chen  |e verfasserin  |4 aut 
700 1 |a Sun, Xinwei  |e verfasserin  |4 aut 
700 1 |a Yang, Siqian  |e verfasserin  |4 aut 
700 1 |a Wang, Yabiao  |e verfasserin  |4 aut 
700 1 |a Wang, Chengjie  |e verfasserin  |4 aut 
700 1 |a Fu, Yanwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 21. Juni, Seite 7639-7653  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:21  |g month:06  |g pages:7639-7653 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3223784  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 21  |c 06  |h 7639-7653