|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM349220476 |
003 |
DE-627 |
005 |
20231226042115.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.27032
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1164.xml
|
035 |
|
|
|a (DE-627)NLM349220476
|
035 |
|
|
|a (NLM)36408852
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xiao-Lei
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A scheme for rapid evaluation of the intermolecular three-body polarization effect in water clusters
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.01.2023
|
500 |
|
|
|a Date Revised 01.02.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley Periodicals LLC.
|
520 |
|
|
|a The ability to accurately and rapidly evaluate the intermolecular many-body polarization effect of the water system is very important for computer simulations of biomolecule in aqueous. In this paper, a scheme is proposed based on the polarizable dipole-dipole interaction model and used to rapidly estimate the intermolecular many-body polarization effect in water clusters. We use a bond-dipole-based polarization function to evaluate the polarization energy. We regard two OH bonds of a water molecule as two bond-dipoles and set the permanent OH bond-dipole moment of a water molecule to be 1.51 Debye. We estimate the induced OH bond-dipole moment via a simple formula in which only one correction factor is needed. This scheme is then applied to tens of water clusters to calculate the three- and four-body interaction energies. The three-body interaction energies of 93 water clusters produced by our scheme are compared with those produced by the counterpoise-corrected CCSD(T)/aug-cc-pVDZ, MP2/aug-cc-pVDZ, M06-2X/jul-cc-pVTZ methods, by the AMOEBApro13, iAMOEBA, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The four-body interaction energies of 47 water clusters yielded by our scheme are compared with those yielded by the counterpoise-corrected MP2/aug-cc-pVDZ and M06-2X/ jul-cc-pVTZ methods, by the AMOEBApro13, AMOEBA+, AMOEBA+(CF) methods, and by the MB-pol method. The comparison results show that the scheme proposed in this paper can reproduce the counterpoise-corrected CCSD(T)/aug-cc-pVDZ three-body interaction energies and reproduce the counterpoise-corrected MP2/aug-cc-pVDZ four-body interaction energies both accurately and efficiently. We anticipate the scheme proposed here can be useful for computer simulations of liquid water and aqueous solutions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
700 |
1 |
|
|a Li, Chao-Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Jia-Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Zhan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hao, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chang-Sheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 44(2023), 5 vom: 15. Feb., Seite 677-686
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2023
|g number:5
|g day:15
|g month:02
|g pages:677-686
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.27032
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2023
|e 5
|b 15
|c 02
|h 677-686
|