A novel rumor detection with multi-objective loss functions in online social networks

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 213(2023) vom: 01. März, Seite 119239
1. Verfasser: Wan, Pengfei (VerfasserIn)
Weitere Verfasser: Wang, Xiaoming, Pang, Guangyao, Wang, Liang, Min, Geyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Multi-objective optimization Neural network Online social networks Rumor detection Sliding interval
LEADER 01000caa a22002652 4500
001 NLM349210497
003 DE-627
005 20240912231932.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.119239  |2 doi 
028 5 2 |a pubmed24n1531.xml 
035 |a (DE-627)NLM349210497 
035 |a (NLM)36407849 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Pengfei  |e verfasserin  |4 aut 
245 1 2 |a A novel rumor detection with multi-objective loss functions in online social networks 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a COVID-19 quickly swept across the world, causing the consequent infodemic represented by the rumors that have brought immeasurable losses to the world. It is imminent to achieve rumor detection as quickly and accurately as possible. However, the existing methods either focus on the accuracy of rumor detection or set a fixed threshold to attain early detection that unfortunately cannot adapt to various rumors. In this paper, we focus on textual rumors in online social networks and propose a novel rumor detection method. We treat the detection time, accuracy and stability as the three training objectives, and continuously adjust and optimize this objective instead of using a fixed value during the entire training process, thereby enhancing its adaptability and universality. To improve the efficiency, we design a sliding interval to intercept the required data rather than using the entire sequence data. To solve the problem of hyperparameter selection brought by integration of multiple optimization objectives, a convex optimization method is utilized to avoid the huge computational cost of enumerations. Extensive experimental results demonstrate the effectiveness of the proposed method. Compared with state-of-art counterparts in three different datasets, the recognition accuracy is increased by an average of 7%, and the stability is improved by an average of 50% 
650 4 |a Journal Article 
650 4 |a Multi-objective optimization 
650 4 |a Neural network 
650 4 |a Online social networks 
650 4 |a Rumor detection 
650 4 |a Sliding interval 
700 1 |a Wang, Xiaoming  |e verfasserin  |4 aut 
700 1 |a Pang, Guangyao  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
700 1 |a Min, Geyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 213(2023) vom: 01. März, Seite 119239  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:213  |g year:2023  |g day:01  |g month:03  |g pages:119239 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.119239  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 213  |j 2023  |b 01  |c 03  |h 119239