Piezoelectric 1T Phase MoSe2 Nanoflowers and Crystallographically Textured Electrodes for Enhanced Low-Temperature Zinc-Ion Storage

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 6 vom: 14. Feb., Seite e2208615
1. Verfasser: Li, Yihui (VerfasserIn)
Weitere Verfasser: Dong, Xingfang, Xu, Zewen, Wang, Menglei, Wang, Ruofei, Xie, Juan, Ding, Yangjian, Su, Pengcheng, Jiang, Chengying, Zhang, Xingmin, Wei, Liyu, Li, Jing-Feng, Chu, Zhaoqiang, Sun, Jingyu, Huang, Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 1T phase MoSe2 aqueous zinc-ion batteries crystallographically textured electrodes low temperature wearable energy storage piezo-electrochemical coupling
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Transition metal dichalcogenides (TMDs) are regarded as promising cathode materials for zinc-ion storage owing to their large interlayer spacings. However, their capabilities are still limited by sluggish kinetics and inferior conductivities. In this study, a facile one-pot solvothermal method is exploited to vertically plant piezoelectric 1T MoSe2  nanoflowers on carbon cloth (CC) to fabricate crystallographically textured electrodes. The self-built-in electric field owing to the intrinsic piezoelectricity during the intercalation/deintercalation processes can serve as an additional piezo-electrochemical coupling accelerator to enhance the migration of Zn2+ . Moreover, the expanded interlayer distance (9-10 Å), overall high hydrophilicity, and conductivity of the 1T phase MoSe2  also promoted the kinetics. These advantages endow the tailored 1T MoSe2 /CC nanopiezocomposite with feasible Zn2+ diffusion and desirable electrochemical performances at room and low temperatures. Moreover, 1T MoSe2 /CC-based quasi-solid-state zinc-ion batteries are constructed to evaluate the potential of the proposed material in low-temperature flexible energy storage devices. This work expounds the positive effect of intrinsic piezoelectricity of TMDs on Zn2+ migration and further explores the availabilities of TMDs in low-temperature wearable energy-storage devices
Beschreibung:Date Completed 10.02.2023
Date Revised 10.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208615