NIR-II Responsive Upconversion Nanoprobe with Simultaneously Enhanced Single-Band Red Luminescence and Phase/Size Control for Bioimaging and Photodynamic Therapy
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 7 vom: 07. Feb., Seite e2207038 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Er3+ sensitization NIR-II responsive photon upconversion NIR-II responsive photodynamic therapy energy transfer single band red emission Lanthanoid Series Elements |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Lanthanide based upconversion (UC) nanoprobes have emerged as promising agents for biological applications. Extending the excitation light to the second near-infrared (NIR-II), instead of the traditional 980/808 nm light, and realizing NIR-II responsive single-band red UC emission is highly demanded for bioimaging application, which has not yet been explored. Here, a new type of NIR-II (1532 nm) light responsive UC nanoparticles (UCNPs) with enhanced single-band red UC emission and controllable phase and size is designed by introducing Er3+ as sensitizer and utilizing Mn2+ as energy manipulator. Through tuning the content of Mn2+ in NaLnF4 :Er/Mn, the crystal phase, size, and emitting color are readily controlled, and the red-to-green (R/G) ratio is significantly increased from ≈20 to ≈300, leading to NIR-II responsive single band red emission via efficient energy transfer between Er3+ and Mn2+ . In addition, the single band red emitting intensity can be further improved by coating shell to avoid the surface quenching effect. More importantly, NIR-II light activated red UC bioimaging and photodynamic therapy through loading photosensitizer of zinc phthalocyanine are successfully achieved for the first time. These findings provide a new strategy of designing NIR-II light responsive single-band red emissive UCNPs for biomedical applications |
---|---|
Beschreibung: | Date Completed 24.02.2023 Date Revised 24.02.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202207038 |