Zn-Doped P-Type InAs Nanocrystal Quantum Dots

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 5 vom: 01. Feb., Seite e2208332
1. Verfasser: Asor, Lior (VerfasserIn)
Weitere Verfasser: Liu, Jing, Xiang, Shuting, Tessler, Nir, Frenkel, Anatoly I, Banin, Uri
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Near infrared colloidal InAs quantum dots doping heavy metal-free printed electronics
LEADER 01000naa a22002652 4500
001 NLM349116946
003 DE-627
005 20231226041846.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202208332  |2 doi 
028 5 2 |a pubmed24n1163.xml 
035 |a (DE-627)NLM349116946 
035 |a (NLM)36398421 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Asor, Lior  |e verfasserin  |4 aut 
245 1 0 |a Zn-Doped P-Type InAs Nanocrystal Quantum Dots 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2023 
500 |a Date Revised 03.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Doped heavy metal-free III-V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p-n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short-wave IR detection and emission applications, manifest heavy n-type character poising a challenge for their transition to p-type behavior. The p-type doping of InAs NCs is presented with Zn - enabling control over the charge carrier type in InAs QDs field effect transistors. The post-synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p-type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+ replacing In3+ is established by X-ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high-resolution electron microscopy corroborated by X-ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short-wave infrared region utilizing heavy-metal free nanocrystal building blocks 
650 4 |a Journal Article 
650 4 |a Near infrared 
650 4 |a colloidal InAs quantum dots 
650 4 |a doping 
650 4 |a heavy metal-free 
650 4 |a printed electronics 
700 1 |a Liu, Jing  |e verfasserin  |4 aut 
700 1 |a Xiang, Shuting  |e verfasserin  |4 aut 
700 1 |a Tessler, Nir  |e verfasserin  |4 aut 
700 1 |a Frenkel, Anatoly I  |e verfasserin  |4 aut 
700 1 |a Banin, Uri  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 5 vom: 01. Feb., Seite e2208332  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:5  |g day:01  |g month:02  |g pages:e2208332 
856 4 0 |u http://dx.doi.org/10.1002/adma.202208332  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 5  |b 01  |c 02  |h e2208332