Assessing the Suitability of a Dicationic Ionic Liquid as a Stabilizing Material for the Storage of DNA in Aqueous Medium
The present study has been undertaken with an objective to find out a suitable medium for the long-term stability and storage of the ct-DNA structure in aqueous solution. For this purpose, the potential of a pyrrolidinium-based dicationic ionic liquid (DIL) in stabilizing ct-DNA structure has been i...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 48 vom: 06. Dez., Seite 14857-14868 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Ionic Liquids DNA 9007-49-2 Water 059QF0KO0R |
Zusammenfassung: | The present study has been undertaken with an objective to find out a suitable medium for the long-term stability and storage of the ct-DNA structure in aqueous solution. For this purpose, the potential of a pyrrolidinium-based dicationic ionic liquid (DIL) in stabilizing ct-DNA structure has been investigated by following the DNA-DIL interaction. Additionally, in order to understand the fundamental aspects regarding the DNA-DIL interaction in a comprehensive manner, studies are also done by employing structurally similar monocationic ionic liquids (MILs). The investigations have been carried out both at ensemble-average and single molecular level by using various spectroscopic techniques. The molecular docking study has also been performed to throw more light into the experimental observations. The combined steady-state and time-resolved fluorescence, fluorescence correlation spectroscopy, and circular dichroism measurements have demonstrated that DILs can effectively be used as better storage media for ct-DNA as compared to MILs. Investigations have also shown that the extra electrostatic interaction between the cationic head group of DIL and the phosphate backbone of DNA is primarily responsible for providing better stabilization to ct-DNA, retaining its native structure in aqueous medium. The outcomes of the present study are also expected to provide valuable insights in designing new polycationic IL systems that can be used in nucleic acid-based applications |
---|---|
Beschreibung: | Date Completed 07.12.2022 Date Revised 06.01.2023 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02530 |