Low-Voltage Intrinsically Stretchable Organic Transistor Amplifiers for Ultrasensitive Electrophysiological Signal Detection

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 5 vom: 10. Feb., Seite e2207006
1. Verfasser: Liu, Kai (VerfasserIn)
Weitere Verfasser: Wang, Chengyu, Liu, Bowen, Bian, Yangshuang, Kuang, Junhua, Hou, Yangkun, Pan, Zhichao, Liu, Guocai, Huang, Xin, Zhu, Zhiheng, Qin, Mingcong, Zhao, Zhiyuan, Jiang, Chen, Liu, Yunqi, Guo, Yunlong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon quantum dots electrophysiological signal detection hybrid dielectric polymers intrinsically stretchable organic transistor amplifiers low operating voltage
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Stretchability is a prerequisite for electronic skin devices. However, state-of-the-art stretchable thin-film transistors do not possess sufficiently low operating voltages and good stability, significantly limiting their use in real-world biomedical applications. Herein, a van der Waals-controlling elastomer/carbon quantum dot interfacial polarization methodology is proposed to form a hybrid polymer dielectric with 620% tensile strain and large-area film uniformity (>A4 paper size). Using the hybrid polymer dielectrics, the prepared intrinsically stretchable organic thin-film transistors demonstrate a low operating voltage below 5 V, 100% strain tolerance, and excellent operational stability, as well as a high on-current/off-current ratio of 105 and a steep subthreshold slope of 500 mV dec-1 . Based on this device technology, an amplifier with a high gain of 90 V V-1 among the highest values of reported stretchable transistors is realized. This amplifier is at the first time applied to detect human electrophysical signals with an output signal amplitude of over 0.2 V, which even outperforms other types of the state-of-the-art organic amplifiers for human electrophysiology monitoring. This stretchable device technology sufficiently meets the safety and portability requirements of wearable biomedical applications, opening a new opportunity to e-skin with signal control and amplification capabilities
Beschreibung:Date Completed 03.02.2023
Date Revised 03.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202207006