Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea
© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 74(2023), 3 vom: 05. Feb., Seite 1022-1038 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Botrytis cinerea 3-glucanase cellobiose immune response lettuce transcriptome β-1 Cellobiose |
Zusammenfassung: | © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high β-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events |
---|---|
Beschreibung: | Date Completed 07.02.2023 Date Revised 09.01.2024 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erac448 |