Solanum lycopersicum CLASS-II KNOX genes regulate fruit anatomy via gibberellin-dependent and independent pathways

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 3 vom: 05. Feb., Seite 848-863
1. Verfasser: Shtern, Amit (VerfasserIn)
Weitere Verfasser: Keren-Keiserman, Alexandra, Mauxion, Jean-Philippe, Furumizu, Chihiro, Alvarez, John Paul, Amsellem, Ziva, Gil, Naama, Motenko, Etel, Alkalai-Tuvia, Sharon, Fallik, Elazar, Gonzalez, Nathalie, Goldshmidt, Alexander
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Solanum lycopersicum Solanum lycopersicum CLASS-II KNOX genes (TKN-II) Fruit shape index gibberellin (GA) pericarp tomato Gibberellins Procera mehr... Plant Growth Regulators Plant Proteins
Beschreibung
Zusammenfassung:© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
The pericarp is the predominant tissue determining the structural characteristics of most fruits. However, the molecular and genetic mechanisms controlling pericarp development remain only partially understood. Previous studies have identified that CLASS-II KNOX genes regulate fruit size, shape, and maturation in Arabidopsis thaliana and Solanum lycopersicum. Here we characterized the roles of the S. lycopersicum CLASS-II KNOX (TKN-II) genes in pericarp development via a detailed histological, anatomical, and karyotypical analysis of TKN-II gene clade mRNA-knockdown (35S:amiR-TKN-II) fruits. We identify that 35S:amiR-TKN-II pericarps contain more cells around their equatorial perimeter and fewer cell layers than the control. In addition, the cell sizes but not the ploidy levels of these pericarps were dramatically reduced. Further, we demonstrate that fruit shape and pericarp layer number phenotypes of the 35S:amiR-TKN-II fruits can be overridden by the procera mutant, known to induce a constitutive response to the plant hormone gibberellin. However, neither the procera mutation nor exogenous gibberellin application can fully rescue the reduced pericarp width and cell size phenotype of 35S:amiR-TKN-II pericarps. Our findings establish that TKN-II genes regulate tomato fruit anatomy, acting via gibberellin to control fruit shape but utilizing a gibberellin-independent pathway to control the size of pericarp cells
Beschreibung:Date Completed 07.02.2023
Date Revised 27.02.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erac454