Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 238(2023), 2 vom: 01. Apr., Seite 506-528
1. Verfasser: Potkay, Aaron (VerfasserIn)
Weitere Verfasser: Feng, Xue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. dynamic optimality nonstructural carbohydrates source-sink dynamics stomatal optimization tree growth tree hydraulics turgor-driven expansion Carbohydrates
LEADER 01000naa a22002652 4500
001 NLM348905963
003 DE-627
005 20231226041357.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.18620  |2 doi 
028 5 2 |a pubmed24n1162.xml 
035 |a (DE-627)NLM348905963 
035 |a (NLM)36377138 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Potkay, Aaron  |e verfasserin  |4 aut 
245 1 0 |a Do stomata optimize turgor-driven growth? A new framework for integrating stomata response with whole-plant hydraulics and carbon balance 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.03.2023 
500 |a Date Revised 13.04.2023 
500 |a published: Print-Electronic 
500 |a CommentIn: New Phytol. 2023 Apr;238(2):457-460. - PMID 36924327 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation. 
520 |a Every existing optimal stomatal model uses photosynthetic carbon assimilation as a proxy for plant evolutionary fitness. However, assimilation and growth are often decoupled, making assimilation less ideal for representing fitness when optimizing stomatal conductance to water vapor and carbon dioxide. Instead, growth should be considered a closer proxy for fitness. We hypothesize stomata have evolved to maximize turgor-driven growth, instead of assimilation, over entire plants' lifetimes, improving their abilities to compete and reproduce. We develop a stomata model that dynamically maximizes whole-stem growth following principles from turgor-driven growth models. Stomata open to assimilate carbohydrates that supply growth and osmotically generate turgor, while stomata close to prevent losses of turgor and growth due to negative water potentials. In steady state, the growth optimization model captures realistic stomatal, growth, and carbohydrate responses to environmental cues, reconciles conflicting interpretations within existing stomatal optimization theories, and explains patterns of carbohydrate storage and xylem conductance observed during and after drought. Our growth optimization hypothesis introduces a new paradigm for stomatal optimization models, elevates the role of whole-plant carbon use and carbon storage in stomatal functioning, and has the potential to simultaneously predict gross productivity, net productivity, and plant mortality through a single, consistent modeling framework 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a dynamic optimality 
650 4 |a nonstructural carbohydrates 
650 4 |a source-sink dynamics 
650 4 |a stomatal optimization 
650 4 |a tree growth 
650 4 |a tree hydraulics 
650 4 |a turgor-driven expansion 
650 7 |a Carbohydrates  |2 NLM 
700 1 |a Feng, Xue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 238(2023), 2 vom: 01. Apr., Seite 506-528  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:238  |g year:2023  |g number:2  |g day:01  |g month:04  |g pages:506-528 
856 4 0 |u http://dx.doi.org/10.1111/nph.18620  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 238  |j 2023  |e 2  |b 01  |c 04  |h 506-528