Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles

The global market for battery electric vehicles (BEVs) is continuously increasing which results in higher material demand for the production of Li-ion batteries (LIBs). Therefore, the end of life (EOL) of batteries must be handled properly through reusing or recycling to minimize the supply chain is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 41(2023), 2 vom: 14. Feb., Seite 376-388
1. Verfasser: Shafique, Muhammad (VerfasserIn)
Weitere Verfasser: Akbar, Arslan, Rafiq, Muhammad, Azam, Anam, Luo, Xiaowei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Lithium nickel manganese cobalt oxide end-of-life global distribution material flow analysis lithium manganese oxide Lithium 9FN79X2M3F cobalt oxide USK772NS56 mehr... Manganese 42Z2K6ZL8P Nickel 7OV03QG267 Copper 789U1901C5 Aluminum CPD4NFA903 Cobalt 3G0H8C9362 lithium cobalt oxide Oxides
LEADER 01000caa a22002652c 4500
001 NLM348868448
003 DE-627
005 20250304024633.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X221127175  |2 doi 
028 5 2 |a pubmed25n1162.xml 
035 |a (DE-627)NLM348868448 
035 |a (NLM)36373335 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shafique, Muhammad  |e verfasserin  |4 aut 
245 1 0 |a Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.02.2023 
500 |a Date Revised 02.03.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The global market for battery electric vehicles (BEVs) is continuously increasing which results in higher material demand for the production of Li-ion batteries (LIBs). Therefore, the end of life (EOL) of batteries must be handled properly through reusing or recycling to minimize the supply chain issues in future LIBs. This study analyses the global distribution of EOL lithium nickel manganese cobalt (NMC) oxide batteries from BEVs. The Stanford estimation model is used, assuming that the lifespan of NMC batteries follows a Weibull distribution. The global sales data of NMC batteries from 2009 to 2018 were collected and the sales data from 2019 to 2030 were estimated based on historical trends and BEV development plans in the top 10 countries for BEV sales. The result shows a view of EOL NMC batteries worldwide. In 2038, China, South Korea and the United States (US) will be the three leading countries in the recovery of NMC battery materials. An overall global flow of NMC battery materials (aluminium, copper, manganese, steel, lithium and graphite/carbon) was also predicted in this research. This study estimated the waste potential of NMC battery materials specifically in the top 10 countries and also in other countries. Finally, the economic value estimation results for recovered materials indicated that copper, aluminium and manganese will have cumulative economic values of 7.9, 4.4 and 3.9 billion US dollars in 2038, respectively. As this study considers the different specific energy of NMC batteries in the coming years due to technological advancement, the findings can provide a more realistic insight into the future demand for NMC battery materials. This study reveals that a high number of EOL NMC batteries will be accumulated in 2038 in several countries. Therefore, large-scale recycling infrastructures should be set up to improve the efficiency of the recovery of battery materials 
650 4 |a Journal Article 
650 4 |a Lithium nickel manganese cobalt oxide 
650 4 |a end-of-life 
650 4 |a global distribution 
650 4 |a material flow analysis 
650 7 |a lithium manganese oxide  |2 NLM 
650 7 |a Lithium  |2 NLM 
650 7 |a 9FN79X2M3F  |2 NLM 
650 7 |a cobalt oxide  |2 NLM 
650 7 |a USK772NS56  |2 NLM 
650 7 |a Manganese  |2 NLM 
650 7 |a 42Z2K6ZL8P  |2 NLM 
650 7 |a Nickel  |2 NLM 
650 7 |a 7OV03QG267  |2 NLM 
650 7 |a Copper  |2 NLM 
650 7 |a 789U1901C5  |2 NLM 
650 7 |a Aluminum  |2 NLM 
650 7 |a CPD4NFA903  |2 NLM 
650 7 |a Cobalt  |2 NLM 
650 7 |a 3G0H8C9362  |2 NLM 
650 7 |a lithium cobalt oxide  |2 NLM 
650 7 |a Oxides  |2 NLM 
700 1 |a Akbar, Arslan  |e verfasserin  |4 aut 
700 1 |a Rafiq, Muhammad  |e verfasserin  |4 aut 
700 1 |a Azam, Anam  |e verfasserin  |4 aut 
700 1 |a Luo, Xiaowei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 41(2023), 2 vom: 14. Feb., Seite 376-388  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnas 
773 1 8 |g volume:41  |g year:2023  |g number:2  |g day:14  |g month:02  |g pages:376-388 
856 4 0 |u http://dx.doi.org/10.1177/0734242X221127175  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2023  |e 2  |b 14  |c 02  |h 376-388