Competing risks proportional-hazards cure model and generalized extreme value regression : an application to bank failures and acquisitions in the United States

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 16 vom: 09., Seite 4162-4180
1. Verfasser: Beretta, A (VerfasserIn)
Weitere Verfasser: Heuchenne, C, Restaino, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bank failures bank acquisitions competing-risks cure model proportional-hazards
LEADER 01000caa a22002652 4500
001 NLM348669186
003 DE-627
005 20240907232006.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1973386  |2 doi 
028 5 2 |a pubmed24n1526.xml 
035 |a (DE-627)NLM348669186 
035 |a (NLM)36353304 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Beretta, A  |e verfasserin  |4 aut 
245 1 0 |a Competing risks proportional-hazards cure model and generalized extreme value regression  |b an application to bank failures and acquisitions in the United States 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Several commercial banks in the United States disappeared during the last decades due to failure or acquisition by another entity. From a survival analysis perspective, however, the high censoring rate suggests that some institutions are likely to be immune to failure and/or acquisition. In this study, we use a competing risks proportional-hazards cure model in order to measure the impact of bank-specific and macroeconomic variables on the probabilities of being susceptible to these events (i.e. incidence) and on the survival time of susceptible banks (i.e. latency). Moreover, we propose to model the incidence distribution using Generalized Extreme Value regression and compare the results with the ones obtained by the usual logistic regression model. The proposed methodology is evaluated by means of a simulation study and then applied to a dataset of more than 4000 United States commercial banks spanning the period 1993-2018 
650 4 |a Journal Article 
650 4 |a Bank failures 
650 4 |a bank acquisitions 
650 4 |a competing-risks 
650 4 |a cure model 
650 4 |a proportional-hazards 
700 1 |a Heuchenne, C  |e verfasserin  |4 aut 
700 1 |a Restaino, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 16 vom: 09., Seite 4162-4180  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:16  |g day:09  |g pages:4162-4180 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1973386  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 16  |b 09  |h 4162-4180