Semi-Supervised Domain Adaptive Structure Learning
Semi-supervised domain adaptation (SSDA) is quite a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains. Unfortunately, a simple combination of domain adaptation (DA) and semi-supervised learning (SSL) methods o...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 02., Seite 7179-7190
|
1. Verfasser: |
Qin, Can
(VerfasserIn) |
Weitere Verfasser: |
Wang, Lichen,
Ma, Qianqian,
Yin, Yu,
Wang, Huan,
Fu, Yun |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |