Polysaccharide-Derived Ice Recrystallization Inhibitors with a Modular Design : The Case of Dextran-Based Graft Polymers

Ice recrystallization inhibitors inspired from antifreeze proteins (AFPs) are receiving increasing interest for cryobiology and other extreme environment applications. Here, we present a modular strategy to develop polysaccharide-derived biomimetics, and detailed studies were performed in the case o...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 46 vom: 22. Nov., Seite 14097-14108
Auteur principal: Wu, Xiaojun (Auteur)
Autres auteurs: Qiu, Yuwei, Chen, Changhong, Gao, Yi, Wang, Yanlin, Yao, Fanglian, Zhang, Hong, Li, Junjie
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't Ice Dextrans Polymers Antifreeze Proteins Polysaccharides
Description
Résumé:Ice recrystallization inhibitors inspired from antifreeze proteins (AFPs) are receiving increasing interest for cryobiology and other extreme environment applications. Here, we present a modular strategy to develop polysaccharide-derived biomimetics, and detailed studies were performed in the case of dextran. Poly(vinyl alcohol) (PVA) which has been termed as one of the most potent biomimetics of AFPs was grafted onto dextran via thiol-ene click chemistry (Dex-g-PVA). This demonstrated that Dex-g-PVA is effective in IRI and its activity increases with the degree of polymerization (DP) (sizes of ice crystals were 18.846 ± 1.759 and 9.700 ± 1.920 μm with DPs of 30 and 80, respectively) and fraction of PVA. By means of the dynamic ice shaping (DIS) assay, Dex-g-PVA is found to engage on the ice crystal surfaces, thus the ice affinity accounts for their IRI activity. In addition, Dex- g-PVA displayed enhanced IRI activity compared to that of equivalent PVA alone. We speculate that the hydrophilic nature of dextran would derive PVA in a stretch conformation that favors ice binding. The modular design can not only offer polysaccharides IRI activity but also favor the ice-binding behavior of PVA
Description:Date Completed 23.11.2022
Date Revised 23.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02032