Unlock the Potassium Storage Behavior of Single-Phased Tungsten Selenide Nanorods via Large Cation Insertion

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 5 vom: 18. Feb., Seite e2208096
1. Verfasser: Zhao, Zhongchen (VerfasserIn)
Weitere Verfasser: Xu, Tian, Yu, Xuebin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article K+ pre-intercalated WSe2 capacity deterioration mechanism potassium-ion batteries potassium-ion hybrid capacitor ultrahigh stability
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
Metal chalcogenide anodes with a layered structure have been regarded as potential K-based electrochemical energy storage devices with high energy density for large-scale energy storage applications. However, their development is impeded by the slow K-ion transport kinetics and poor structural stability. In this work, the energy-storage behavior is investigated first and decisively associated them with the capacity-degradation of the promising layer-structured WSe2 from an integrated chemical and physical point of view. Then, a single-phased WSe2 with pre-intercalated high K content (SP-Kx WSe2 ) is designed to overcome the capacity-degradation issue fundamentally. Theoretical calculations clarify the beneficial effect of K-ions inside the interlayer of WSe2 on boosting its electrochemical performance, including increasing the electronic conductivity, promoting the K-ion diffusivity, and improving the structural stability. The novel design enables the K-ions pre-intercalated WSe2 anode material to exhibit a high reversible specific capacity of 211 mAh g-1 at 5 A g-1 and superior cycling stability (89.3% capacity retention after 5000 cycles at 1 A g-1 ). Especially, the K-ion hybrid capacitor, assembled from the anode of SP-Kx WSe2 and the cathode of porous activated carbon, delivers superior energy-density up to 175 Wh kg-1 , high power-density as well as exceptional cycling stability
Beschreibung:Date Completed 03.02.2023
Date Revised 03.02.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202208096