V1-Cal hydrogelation enhances its effects on ventricular remodeling reduction and cardiac function improvement post myocardial infarction
Myocardial infarction (MI) is a major cause of disability and mortality worldwide. A cell permeable peptide V1-Cal has shown remarkable therapeutic effects on ML However, using V1-Cal to improve long-term cardiac function after MI is presently limited by its short half-life. Herein, we co-assembled...
Publié dans: | Chemical engineering journal (Lausanne, Switzerland : 1996). - 1999. - 433(2022), Pt 1 vom: 01. Apr. |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | Chemical engineering journal (Lausanne, Switzerland : 1996) |
Sujets: | Journal Article Myocardial infarction Supramolecular hydrogel Sustained release TRPV1 V1-Cal |
Résumé: | Myocardial infarction (MI) is a major cause of disability and mortality worldwide. A cell permeable peptide V1-Cal has shown remarkable therapeutic effects on ML However, using V1-Cal to improve long-term cardiac function after MI is presently limited by its short half-life. Herein, we co-assembled V1-Cal with a well-known hydrogelator Nap-Phe-Phe-Tyr (NapFFY) to obtain a new supramolecular hydrogel V1-Cal/NapFFY. We found that the hydrogel could significantly enhance the therapeutic effects of V1-Cal on ventricular remodeling reduction and cardiac function improvement in a myocardial infarction rat model. In vitro experiments indicated that co-assembly of V1-Cal with NapFFY significantly increased mechanic strength of the hydrogel, enabling a sustained release of V1-Cal for more than two weeks. In vivo experiments supported that sustained release of V1-Cal from V1-Cal/NapFFY hydrogel could effectively decrease the expression and activation of TRPV1, reduce apoptosis and the release of inflammatory factors in a MI rat model. In particular, V1-Cal/NapFFY hydrogel significantly decreased infarct size and fibrosis, while improved cardiac function 28 days post MI. We anticipate that V1-Cal/NapFFY hydrogel could be used clinically to treat MI in the near future |
---|---|
Description: | Date Revised 08.11.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1385-8947 |
DOI: | 10.1016/j.cej.2021.134450 |