Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation

Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorith...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 12 vom: 04. Dez., Seite 3353-3366
1. Verfasser: Lee, Moon Hwan (VerfasserIn)
Weitere Verfasser: Lew, Hah Min, Youn, Sangyeon, Kim, Tae, Hwang, Jae Youn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM348455178
003 DE-627
005 20231226040246.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2022.3219401  |2 doi 
028 5 2 |a pubmed24n1161.xml 
035 |a (DE-627)NLM348455178 
035 |a (NLM)36331635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Moon Hwan  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.11.2022 
500 |a Date Revised 16.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorithms show limited performance in the fast and accurate generation of acoustic holograms, thus hindering the development of novel applications. We here propose a deep learning-based framework to achieve fast and accurate acoustic hologram generation. The framework has an autoencoder-like architecture; thus, the unsupervised training is realized without any ground truth. For the framework, we demonstrate a newly developed hologram generator network, the holographic ultrasound generation network (HU-Net), which is suitable for unsupervised learning of hologram generation, and a novel loss function that is devised for energy-efficient holograms. Furthermore, for considering various hologram devices (i.e., ultrasound transducers), we propose a physical constraint (PC) layer. Simulation and experimental studies were carried out for two different hologram devices, such as a 3-D printed lens, attached to a single element transducer, and a 2-D ultrasound array. The proposed framework was compared with the iterative angular spectrum approach (IASA) and the state-of-the-art (SOTA) iterative optimization method, Diff-PAT. In the simulation study, our framework showed a few hundred times faster generation speed, along with comparable or even better reconstruction quality, than those of IASA and Diff-PAT. In the experimental study, the framework was validated with 3-D printed lenses fabricated based on different methods, and the physical effect of the lenses on the reconstruction quality was discussed. The outcomes of the proposed framework in various cases (i.e., hologram generator networks, loss functions, and hologram devices) suggest that our framework may become a very useful alternative tool for other existing acoustic hologram applications, and it can expand novel medical applications 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lew, Hah Min  |e verfasserin  |4 aut 
700 1 |a Youn, Sangyeon  |e verfasserin  |4 aut 
700 1 |a Kim, Tae  |e verfasserin  |4 aut 
700 1 |a Hwang, Jae Youn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 12 vom: 04. Dez., Seite 3353-3366  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:69  |g year:2022  |g number:12  |g day:04  |g month:12  |g pages:3353-3366 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2022.3219401  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 12  |b 04  |c 12  |h 3353-3366