The Transform-and-Perform Framework : Explainable Deep Learning Beyond Classification

In recent years, visual analytics (VA) has shown promise in alleviating the challenges of interpreting black-box deep learning (DL) models. While the focus of VA for explainable DL has been mainly on classification problems, DL is gaining popularity in high-dimensional-to-high-dimensional (H-H) prob...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 2 vom: 15. Feb., Seite 1502-1515
Auteur principal: Prasad, Vidya (Auteur)
Autres auteurs: van Sloun, Ruud J G, Elzen, Stef van den, Vilanova, Anna, Pezzotti, Nicola
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM348411472
003 DE-627
005 20250304013614.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3219248  |2 doi 
028 5 2 |a pubmed25n1161.xml 
035 |a (DE-627)NLM348411472 
035 |a (NLM)36327191 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Prasad, Vidya  |e verfasserin  |4 aut 
245 1 4 |a The Transform-and-Perform Framework  |b Explainable Deep Learning Beyond Classification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, visual analytics (VA) has shown promise in alleviating the challenges of interpreting black-box deep learning (DL) models. While the focus of VA for explainable DL has been mainly on classification problems, DL is gaining popularity in high-dimensional-to-high-dimensional (H-H) problems such as image-to-image translation. In contrast to classification, H-H problems have no explicit instance groups or classes to study. Each output is continuous, high-dimensional, and changes in an unknown non-linear manner with changes in the input. These unknown relations between the input, model and output necessitate the user to analyze them in conjunction, leveraging symmetries between them. Since classification tasks do not exhibit some of these challenges, most existing VA systems and frameworks allow limited control of the components required to analyze models beyond classification. Hence, we identify the need for and present a unified conceptual framework, the Transform-and-Perform framework (T&P), to facilitate the design of VA systems for DL model analysis focusing on H-H problems. T&P provides a checklist to structure and identify workflows and analysis strategies to design new VA systems, and understand existing ones to uncover potential gaps for improvements. The goal is to aid the creation of effective VA systems that support the structuring of model understanding and identifying actionable insights for model improvements. We highlight the growing need for new frameworks like T&P with a real-world image-to-image translation application. We illustrate how T&P effectively supports the understanding and identification of potential gaps in existing VA systems 
650 4 |a Journal Article 
700 1 |a van Sloun, Ruud J G  |e verfasserin  |4 aut 
700 1 |a Elzen, Stef van den  |e verfasserin  |4 aut 
700 1 |a Vilanova, Anna  |e verfasserin  |4 aut 
700 1 |a Pezzotti, Nicola  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 2 vom: 15. Feb., Seite 1502-1515  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:2  |g day:15  |g month:02  |g pages:1502-1515 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3219248  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 2  |b 15  |c 02  |h 1502-1515