Reversible Chiral Optical Switching Based on Co-Assembled Spiropyran Gels

In recent years, it has been very interesting to dynamically adjust the emission of circularly polarized luminescence (CPL) materials through external stimulation due to their applications and the fundamental interest in them. In this work, luminescence-tunable and light-responsive supramolecular co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 45 vom: 15. Nov., Seite 13668-13673
1. Verfasser: Han, Dongxue (VerfasserIn)
Weitere Verfasser: Jiao, Tifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In recent years, it has been very interesting to dynamically adjust the emission of circularly polarized luminescence (CPL) materials through external stimulation due to their applications and the fundamental interest in them. In this work, luminescence-tunable and light-responsive supramolecular co-assembly CPL-active materials are fabricated by mixing an achiral functional spiropyran (SP-COOH) molecule with a chiral gelator. The spiropyran achieves a reversible change between a white closed ring state spiropyran and a purple zwitterionic merocyanine state in supramolecular co-assembly gels under alternate visible (vis) and ultraviolet (UV) light irradiation. The gel shows strong CPL signals due to the chirality transfer in co-assembly systems. These signals could change reversibly under alternate exposure to UV and vis light. Therefore, utilizing the multistimulus-responsive CPL signals in different states, a CPL switch of the supramolecular system signal according to the combinatorial control of UV-vis light irradiation is constructed
Beschreibung:Date Revised 15.11.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01473