Robust and efficient estimation of GARCH models based on Hellinger distance

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 15 vom: 11., Seite 3976-4002
1. Verfasser: Zhao, Qiang (VerfasserIn)
Weitere Verfasser: Chen, Liang, Wu, Jingjing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62G05 62G35 GARCH models Primary 62F10 kernel estimation maximum likelihood estimation minimum (profile) Hellinger distance estimation robustness secondary 62G07
LEADER 01000naa a22002652 4500
001 NLM348384513
003 DE-627
005 20231226040040.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1970120  |2 doi 
028 5 2 |a pubmed24n1161.xml 
035 |a (DE-627)NLM348384513 
035 |a (NLM)36324487 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Qiang  |e verfasserin  |4 aut 
245 1 0 |a Robust and efficient estimation of GARCH models based on Hellinger distance 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.11.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a It is well known that financial data frequently contain outlying observations. Almost all methods and techniques used to estimate GARCH models are likelihood-based and thus generally non-robust against outliers. Minimum distance method, as an important tool for statistical inferences and a competitive alternative for achieving robustness, has surprisingly not been well explored for GARCH models. In this paper, we proposed a minimum Hellinger distance estimator (MHDE) and a minimum profile Hellinger distance estimator (MPHDE), depending on whether the innovation distribution is specified or not, for estimating the parameters in GARCH models. The construction and investigation of the two estimators are quite involved due to the non-i.i.d. nature of data. We proved that the MHDE is a consistent estimator and derived its bias in explicit expression. For both of the proposed estimators, we demonstrated their finite-sample performance through simulation studies and compared with the well-established methods including MLE, Gaussian Quasi-MLE, Non-Gaussian Quasi-MLE and Least Absolute Deviation estimator. Our numerical results showed that MHDE and MPHDE have much better performance than MLE-based methods when data are contaminated while simultaneously they are very competitive when data is clean, which testified to the robustness and efficiency of the two proposed MHD-type estimations 
650 4 |a Journal Article 
650 4 |a 62G05 
650 4 |a 62G35 
650 4 |a GARCH models 
650 4 |a Primary 62F10 
650 4 |a kernel estimation 
650 4 |a maximum likelihood estimation 
650 4 |a minimum (profile) Hellinger distance estimation 
650 4 |a robustness 
650 4 |a secondary 62G07 
700 1 |a Chen, Liang  |e verfasserin  |4 aut 
700 1 |a Wu, Jingjing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 15 vom: 11., Seite 3976-4002  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:15  |g day:11  |g pages:3976-4002 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1970120  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 15  |b 11  |h 3976-4002