Explainable AI for clinical and remote health applications : a survey on tabular and time series data

© The Author(s) 2022.

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - 56(2023), 6 vom: 28., Seite 5261-5315
1. Verfasser: Di Martino, Flavio (VerfasserIn)
Weitere Verfasser: Delmastro, Franca
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Clinical DSS EHR Explainable AI Health Remote patient monitoring Time series
LEADER 01000naa a22002652 4500
001 NLM348346042
003 DE-627
005 20231226035944.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-022-10304-3  |2 doi 
028 5 2 |a pubmed24n1161.xml 
035 |a (DE-627)NLM348346042 
035 |a (NLM)36320613 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Di Martino, Flavio  |e verfasserin  |4 aut 
245 1 0 |a Explainable AI for clinical and remote health applications  |b a survey on tabular and time series data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2022. 
520 |a Nowadays Artificial Intelligence (AI) has become a fundamental component of healthcare applications, both clinical and remote, but the best performing AI systems are often too complex to be self-explaining. Explainable AI (XAI) techniques are defined to unveil the reasoning behind the system's predictions and decisions, and they become even more critical when dealing with sensitive and personal health data. It is worth noting that XAI has not gathered the same attention across different research areas and data types, especially in healthcare. In particular, many clinical and remote health applications are based on tabular and time series data, respectively, and XAI is not commonly analysed on these data types, while computer vision and Natural Language Processing (NLP) are the reference applications. To provide an overview of XAI methods that are most suitable for tabular and time series data in the healthcare domain, this paper provides a review of the literature in the last 5 years, illustrating the type of generated explanations and the efforts provided to evaluate their relevance and quality. Specifically, we identify clinical validation, consistency assessment, objective and standardised quality evaluation, and human-centered quality assessment as key features to ensure effective explanations for the end users. Finally, we highlight the main research challenges in the field as well as the limitations of existing XAI methods 
650 4 |a Journal Article 
650 4 |a Clinical DSS 
650 4 |a EHR 
650 4 |a Explainable AI 
650 4 |a Health 
650 4 |a Remote patient monitoring 
650 4 |a Time series 
700 1 |a Delmastro, Franca  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 56(2023), 6 vom: 28., Seite 5261-5315  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g volume:56  |g year:2023  |g number:6  |g day:28  |g pages:5261-5315 
856 4 0 |u http://dx.doi.org/10.1007/s10462-022-10304-3  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 56  |j 2023  |e 6  |b 28  |h 5261-5315