Human Collective Intelligence Inspired Multi-View Representation Learning - Enabling View Communication by Simulating Human Communication Mechanism

In real-world applications, we often encounter multi-view learning tasks where we need to learn from multiple sources of data or use multiple sources of data to make decisions. Multi-view representation learning, which can learn a unified representation from multiple data sources, is a key pre-task...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 01. Juni, Seite 7412-7429
1. Verfasser: Jia, Xiaodong (VerfasserIn)
Weitere Verfasser: Jing, Xiao-Yuan, Sun, Qixing, Chen, Songcan, Du, Bo, Zhang, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM348325738
003 DE-627
005 20231226035917.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3218605  |2 doi 
028 5 2 |a pubmed24n1161.xml 
035 |a (DE-627)NLM348325738 
035 |a (NLM)36318561 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Xiaodong  |e verfasserin  |4 aut 
245 1 0 |a Human Collective Intelligence Inspired Multi-View Representation Learning - Enabling View Communication by Simulating Human Communication Mechanism 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.05.2023 
500 |a Date Revised 09.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In real-world applications, we often encounter multi-view learning tasks where we need to learn from multiple sources of data or use multiple sources of data to make decisions. Multi-view representation learning, which can learn a unified representation from multiple data sources, is a key pre-task of multi-view learning and plays a significant role in real-world applications. Accordingly, how to improve the performance of multi-view representation learning is an important issue. In this work, inspired by human collective intelligence shown in group decision making, we introduce the concept of view communication into multi-view representation learning. Furthermore, by simulating human communication mechanism, we propose a novel multi-view representation learning approach that can fulfill multi-round view communication. Thus, each view of our approach can exploit the complementary information from other views to help with modeling its own representation, and mutual help between views is achieved. Extensive experiment results on six datasets from three significant fields indicate that our approach substantially improves the average classification accuracy by 4.536% in medicine and bioinformatics fields as well as 4.115% in machine learning field 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Jing, Xiao-Yuan  |e verfasserin  |4 aut 
700 1 |a Sun, Qixing  |e verfasserin  |4 aut 
700 1 |a Chen, Songcan  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 01. Juni, Seite 7412-7429  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:01  |g month:06  |g pages:7412-7429 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3218605  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 01  |c 06  |h 7412-7429