Drinking From a Firehose : Continual Learning With Web-Scale Natural Language

Continual learning systems will interact with humans, with each other, and with the physical world through time - and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark which enables realistic evaluation of algorithms. In this paper, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 31. Mai, Seite 5684-5696
1. Verfasser: Hu, Hexiang (VerfasserIn)
Weitere Verfasser: Sener, Ozan, Sha, Fei, Koltun, Vladlen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Continual learning systems will interact with humans, with each other, and with the physical world through time - and continue to learn and adapt as they do. An important open problem for continual learning is a large-scale benchmark which enables realistic evaluation of algorithms. In this paper, we study a natural setting for continual learning on a massive scale. We introduce the problem of personalized online language learning (POLL), which involves fitting personalized language models to a population of users that evolves over time. To facilitate research on POLL, we collect massive datasets of Twitter posts. These datasets, Firehose10 M and Firehose100 M, comprise 100 million tweets, posted by one million users over six years. Enabled by the Firehose datasets, we present a rigorous evaluation of continual learning algorithms on an unprecedented scale. Based on this analysis, we develop a simple algorithm for continual gradient descent (ConGraD) that outperforms prior continual learning methods on the Firehose datasets as well as earlier benchmarks. Collectively, the POLL problem setting, the Firehose datasets, and the ConGraD algorithm enable a complete benchmark for reproducible research on web-scale continual learning
Beschreibung:Date Completed 10.04.2023
Date Revised 11.04.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3218265