Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 1 vom: 14. Jan., Seite e2207634
1. Verfasser: O'Neill, Stephen J K (VerfasserIn)
Weitere Verfasser: Huang, Zehuan, Ahmed, Mohammed H, Boys, Alexander J, Velasco-Bosom, Santiago, Li, Jiaxuan, Owens, Róisín M, McCune, Jade A, Malliaras, George G, Scherman, Oren A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioelectronics conducting polymers host-guest chemistry hydrogels supramolecular networks Polymers Hydrogels
Beschreibung
Zusammenfassung:© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Addressing the mechanical mismatch between biological tissue and traditional electronic materials remains a major challenge in bioelectronics. While rigidity of such materials limits biocompatibility, supramolecular polymer networks can harmoniously interface with biological tissues as they are soft, wet, and stretchable. Here, an electrically conductive supramolecular polymer network that simultaneously exhibits both electronic and ionic conductivity while maintaining tissue-mimetic mechanical properties, providing an ideal electronic interface with the human body, is introduced. Rational design of an ultrahigh affinity host-guest ternary complex led to binding affinities (>1013  M-2 ) of over an order of magnitude greater than previous reports. Embedding these complexes as dynamic cross-links, coupled with in situ synthesis of a conducting polymer, resulted in electrically conductive supramolecular polymer networks with tissue-mimetic Young's moduli (<5 kPa), high stretchability (>500%), rapid self-recovery and high water content (>84%). Achieving such properties enabled fabrication of intrinsically-stretchable stand-alone bioelectrodes, capable of accurately monitoring electromyography signals, free from any rigid materials
Beschreibung:Date Completed 06.01.2023
Date Revised 11.01.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202207634