Harris hawks optimization based on global cross-variation and tent mapping

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author se...

Description complète

Détails bibliographiques
Publié dans:The Journal of supercomputing. - 1998. - 79(2023), 5 vom: 18., Seite 5576-5614
Auteur principal: Chen, Lei (Auteur)
Autres auteurs: Song, Na, Ma, Yunpeng
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:The Journal of supercomputing
Sujets:Journal Article Crossover mutation Greedy selection Harris hawks optimization Meta-heuristic algorithm Tent mapping
LEADER 01000caa a22002652c 4500
001 NLM348249187
003 DE-627
005 20250304011124.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s11227-022-04869-7  |2 doi 
028 5 2 |a pubmed25n1160.xml 
035 |a (DE-627)NLM348249187 
035 |a (NLM)36310649 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Lei  |e verfasserin  |4 aut 
245 1 0 |a Harris hawks optimization based on global cross-variation and tent mapping 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 
520 |a Harris hawks optimization (HHO) is a new meta-heuristic algorithm that builds a model by imitating the predation process of Harris hawks. In order to solve the problems of poor convergence speed caused by uniform choice position update formula in the exploration stage of basic HHO and falling into local optimization caused by insufficient population richness in the later stage of the algorithm, a Harris hawks optimization based on global cross-variation and tent mapping (CRTHHO) is proposed in this paper. Firstly, the tent mapping is introduced in the exploration stage to optimize random parameter q to speed up the convergence in the early stage. Secondly, the crossover mutation operator is introduced to cross and mutate the global optimal position in each iteration process. The greedy strategy is used to select, which prevents the algorithm from falling into local optimal because of skipping the optimal solution and improves the convergence accuracy of the algorithm. In order to investigate the performance of CRTHHO, experiments are carried out on ten benchmark functions and the CEC2017 test set. Experimental results show that the CRTHHO algorithm performs better than the HHO algorithm and is competitive with five advanced meta-heuristic algorithms 
650 4 |a Journal Article 
650 4 |a Crossover mutation 
650 4 |a Greedy selection 
650 4 |a Harris hawks optimization 
650 4 |a Meta-heuristic algorithm 
650 4 |a Tent mapping 
700 1 |a Song, Na  |e verfasserin  |4 aut 
700 1 |a Ma, Yunpeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Journal of supercomputing  |d 1998  |g 79(2023), 5 vom: 18., Seite 5576-5614  |w (DE-627)NLM098252410  |x 0920-8542  |7 nnas 
773 1 8 |g volume:79  |g year:2023  |g number:5  |g day:18  |g pages:5576-5614 
856 4 0 |u http://dx.doi.org/10.1007/s11227-022-04869-7  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 79  |j 2023  |e 5  |b 18  |h 5576-5614