A Monolithic Stochastic Computing Architecture for Energy Efficient Arithmetic

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 2 vom: 01. Jan., Seite e2206168
1. Verfasser: Ravichandran, Harikrishnan (VerfasserIn)
Weitere Verfasser: Zheng, Yikai, Schranghamer, Thomas F, Trainor, Nicholas, Redwing, Joan M, Das, Saptarshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D materials arithmetic memtransistors stochastic computing
LEADER 01000naa a22002652 4500
001 NLM348223196
003 DE-627
005 20231226035656.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202206168  |2 doi 
028 5 2 |a pubmed24n1160.xml 
035 |a (DE-627)NLM348223196 
035 |a (NLM)36308032 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ravichandran, Harikrishnan  |e verfasserin  |4 aut 
245 1 2 |a A Monolithic Stochastic Computing Architecture for Energy Efficient Arithmetic 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2023 
500 |a Date Revised 13.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a As the energy and hardware investments necessary for conventional high-precision digital computing continue to explode in the era of artificial intelligence (AI), a change in paradigm that can trade precision for energy and resource efficiency is being sought for many computing applications. Stochastic computing (SC) is an attractive alternative since, unlike digital computers, which require many logic gates and a high transistor volume to perform basic arithmetic operations such as addition, subtraction, multiplication, sorting, etc., SC can implement the same using simple logic gates. While it is possible to accelerate SC using traditional silicon complementary metal-oxide-semiconductor (CMOS) technology, the need for extensive hardware investment to generate stochastic bits (s-bits), the fundamental computing primitive for SC, makes it less attractive. Memristor and spin-based devices offer natural randomness but depend on hybrid designs involving CMOS peripherals for accelerating SC, which increases area and energy burden. Here, the limitations of existing and emerging technologies are overcome, and a standalone SC architecture embedded in memory and based on 2D memtransistors is experimentally demonstrated. The monolithic and non-von-Neumann SC architecture occupies a small hardware footprint and consumes a miniscule amount of energy (<1 nJ) for both s-bit generation and arithmetic operations, highlighting the benefits of SC 
650 4 |a Journal Article 
650 4 |a 2D materials 
650 4 |a arithmetic 
650 4 |a memtransistors 
650 4 |a stochastic computing 
700 1 |a Zheng, Yikai  |e verfasserin  |4 aut 
700 1 |a Schranghamer, Thomas F  |e verfasserin  |4 aut 
700 1 |a Trainor, Nicholas  |e verfasserin  |4 aut 
700 1 |a Redwing, Joan M  |e verfasserin  |4 aut 
700 1 |a Das, Saptarshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 2 vom: 01. Jan., Seite e2206168  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:2  |g day:01  |g month:01  |g pages:e2206168 
856 4 0 |u http://dx.doi.org/10.1002/adma.202206168  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 2  |b 01  |c 01  |h e2206168