Attention Regularized Laplace Graph for Domain Adaptation

In leveraging manifold learning in domain adaptation (DA), graph embedding-based DA methods have shown their effectiveness in preserving data manifold through the Laplace graph. However, current graph embedding DA methods suffer from two issues: 1). they are only concerned with preservation of the u...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 28., Seite 7322-7337
1. Verfasser: Luo, Lingkun (VerfasserIn)
Weitere Verfasser: Chen, Liming, Hu, Shiqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM348206313
003 DE-627
005 20231226035633.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3216781  |2 doi 
028 5 2 |a pubmed24n1160.xml 
035 |a (DE-627)NLM348206313 
035 |a (NLM)36306308 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Lingkun  |e verfasserin  |4 aut 
245 1 0 |a Attention Regularized Laplace Graph for Domain Adaptation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.12.2022 
500 |a Date Revised 01.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In leveraging manifold learning in domain adaptation (DA), graph embedding-based DA methods have shown their effectiveness in preserving data manifold through the Laplace graph. However, current graph embedding DA methods suffer from two issues: 1). they are only concerned with preservation of the underlying data structures in the embedding and ignore sub-domain adaptation, which requires taking into account intra-class similarity and inter-class dissimilarity, thereby leading to negative transfer; 2). manifold learning is proposed across different feature/label spaces separately, thereby hindering unified comprehensive manifold learning. In this paper, starting from our previous DGA-DA, we propose a novel DA method, namely A ttention R egularized Laplace G raph-based D omain A daptation (ARG-DA), to remedy the aforementioned issues. Specifically, by weighting the importance across different sub-domain adaptation tasks, we propose the A ttention R egularized Laplace Graph for class aware DA, thereby generating the attention regularized DA. Furthermore, using a specifically designed FEEL strategy, our approach dynamically unifies alignment of the manifold structures across different feature/label spaces, thus leading to comprehensive manifold learning. Comprehensive experiments are carried out to verify the effectiveness of the proposed DA method, which consistently outperforms the state of the art DA methods on 7 standard DA benchmarks, i.e., 37 cross-domain image classification tasks including object, face, and digit images. An in-depth analysis of the proposed DA method is also discussed, including sensitivity, convergence, and robustness 
650 4 |a Journal Article 
700 1 |a Chen, Liming  |e verfasserin  |4 aut 
700 1 |a Hu, Shiqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 28., Seite 7322-7337  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:28  |g pages:7322-7337 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3216781  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 28  |h 7322-7337