VLT : Vision-Language Transformer and Query Generation for Referring Segmentation

We propose a Vision-Language Transformer (VLT) framework for referring segmentation to facilitate deep interactions among multi-modal information and enhance the holistic understanding to vision-language features. There are different ways to understand the dynamic emphasis of a language expression,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 28. Juni, Seite 7900-7916
1. Verfasser: Ding, Henghui (VerfasserIn)
Weitere Verfasser: Liu, Chang, Wang, Suchen, Jiang, Xudong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM348206186
003 DE-627
005 20231226035632.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3217852  |2 doi 
028 5 2 |a pubmed24n1160.xml 
035 |a (DE-627)NLM348206186 
035 |a (NLM)36306296 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ding, Henghui  |e verfasserin  |4 aut 
245 1 0 |a VLT  |b Vision-Language Transformer and Query Generation for Referring Segmentation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a Vision-Language Transformer (VLT) framework for referring segmentation to facilitate deep interactions among multi-modal information and enhance the holistic understanding to vision-language features. There are different ways to understand the dynamic emphasis of a language expression, especially when interacting with the image. However, the learned queries in existing transformer works are fixed after training, which cannot cope with the randomness and huge diversity of the language expressions. To address this issue, we propose a Query Generation Module, which dynamically produces multiple sets of input-specific queries to represent the diverse comprehensions of language expression. To find the best among these diverse comprehensions, so as to generate a better mask, we propose a Query Balance Module to selectively fuse the corresponding responses of the set of queries. Furthermore, to enhance the model's ability in dealing with diverse language expressions, we consider inter-sample learning to explicitly endow the model with knowledge of understanding different language expressions to the same object. We introduce masked contrastive learning to narrow down the features of different expressions for the same target object while distinguishing the features of different objects. The proposed approach is lightweight and achieves new state-of-the-art referring segmentation results consistently on five datasets 
650 4 |a Journal Article 
700 1 |a Liu, Chang  |e verfasserin  |4 aut 
700 1 |a Wang, Suchen  |e verfasserin  |4 aut 
700 1 |a Jiang, Xudong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 28. Juni, Seite 7900-7916  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:28  |g month:06  |g pages:7900-7916 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3217852  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 28  |c 06  |h 7900-7916