Triggering ZT to 0.40 by Engineering Orientation in One Polymeric Semiconductor

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 2 vom: 31. Jan., Seite e2208215
1. Verfasser: Wang, Dongyang (VerfasserIn)
Weitere Verfasser: Ding, Jiamin, Dai, Xiaojuan, Xiang, Lanyi, Ye, Dekai, He, Zihan, Zhang, Fengjiao, Jung, Seok-Heon, Lee, Jin-Kyun, Di, Chong-An, Zhu, Daoben
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article molecular orientation organic thermoelectric materials polymer semiconductors
LEADER 01000naa a22002652 4500
001 NLM348199287
003 DE-627
005 20231226035623.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202208215  |2 doi 
028 5 2 |a pubmed24n1160.xml 
035 |a (DE-627)NLM348199287 
035 |a (NLM)36305596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Dongyang  |e verfasserin  |4 aut 
245 1 0 |a Triggering ZT to 0.40 by Engineering Orientation in One Polymeric Semiconductor 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2023 
500 |a Date Revised 13.01.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Breaking the thermoelectric (TE) trade-off relationship is an important task for maximizing the TE performance of polymeric semiconductors. Existing efforts have focused on designing high-mobility semiconductors and achieving ordered molecular doping, ignoring the critical role of the molecular orientation during TE conversion. Herein, the achievement of ZT to 0.40 is reported by fine-tuning the molecular orientation of one diketopyrrolopyrrole (DPP)-based polymer (DPP-BTz). Films with bimodal molecular orientation yield superior doping efficiency by increasing the lamellar spacing and achieve increased splitting between the Fermi energy and the transport energy to enhance the thermopower. These factors contribute to the simultaneous improvement in the Seebeck coefficient and electrical conductivity in an unexpected manner. Importantly, the bimodal film exhibits a maximum power factor of up to 346 µW m-1 K-2 , >400% higher than that of unimodal films. These results demonstrate the great potential of molecular orientation engineering in polymeric semiconductors for developing state-of-the-art organic TE (OTE) materials 
650 4 |a Journal Article 
650 4 |a molecular orientation 
650 4 |a organic thermoelectric materials 
650 4 |a polymer semiconductors 
700 1 |a Ding, Jiamin  |e verfasserin  |4 aut 
700 1 |a Dai, Xiaojuan  |e verfasserin  |4 aut 
700 1 |a Xiang, Lanyi  |e verfasserin  |4 aut 
700 1 |a Ye, Dekai  |e verfasserin  |4 aut 
700 1 |a He, Zihan  |e verfasserin  |4 aut 
700 1 |a Zhang, Fengjiao  |e verfasserin  |4 aut 
700 1 |a Jung, Seok-Heon  |e verfasserin  |4 aut 
700 1 |a Lee, Jin-Kyun  |e verfasserin  |4 aut 
700 1 |a Di, Chong-An  |e verfasserin  |4 aut 
700 1 |a Zhu, Daoben  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 2 vom: 31. Jan., Seite e2208215  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:35  |g year:2023  |g number:2  |g day:31  |g month:01  |g pages:e2208215 
856 4 0 |u http://dx.doi.org/10.1002/adma.202208215  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 2  |b 31  |c 01  |h e2208215