|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM348193858 |
003 |
DE-627 |
005 |
20231226035615.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207542
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1160.xml
|
035 |
|
|
|a (DE-627)NLM348193858
|
035 |
|
|
|a (NLM)36305041
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Murphy, Robert D
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.01.2023
|
500 |
|
|
|a Date Revised 23.01.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Hydrogels hold much promise for 3D printing of functional living materials; however, challenges remain in tailoring mechanical robustness as well as biological performance. In addressing this challenge, the modular synthesis of functional hydrogels from 3-arm diblock copolypeptide stars composed of an inner poly(l-glutamate) domain and outer poly(l-tyrosine) or poly(l-valine) blocks is described. Physical crosslinking due to ß-sheet assembly of these star block copolymers gives mechanical stability during extrusion printing and the selective incorporation of methacrylate units allows for subsequent photocrosslinking to occur under biocompatible conditions. This permits direct ink writing (DIW) printing of bacteria-based mixtures leading to 3D objects with high fidelity and excellent bacterial viability. The tunable stiffness of different copolypeptide networks enables control over proliferation and colony formation for embedded Escherichia coli bacteria as demonstrated via isopropyl ß-d-1-thiogalactopyranoside (IPTG) induction of green fluorescent protein (GFP) expression. This translation of molecular structure to network properties highlights the versatility of these polypeptide hydrogel systems with the combination of writable structures and biological activity illustrating the future potential of these 3D-printed biocomposites
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a additive manufacturing
|
650 |
|
4 |
|a block copolymers
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a peptides
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a Peptides
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
700 |
1 |
|
|a Garcia, Ronnie V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Oh, Seung J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wood, Tanner J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jo, Kyoo D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Read de Alaniz, Javier
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Perkins, Ed
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hawker, Craig J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 3 vom: 28. Jan., Seite e2207542
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:3
|g day:28
|g month:01
|g pages:e2207542
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207542
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 3
|b 28
|c 01
|h e2207542
|