|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM348150075 |
003 |
DE-627 |
005 |
20231226035514.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207338
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1160.xml
|
035 |
|
|
|a (DE-627)NLM348150075
|
035 |
|
|
|a (NLM)36300610
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Jang Hwan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atomically Flat, 2D Edge-Directed Self-Assembly of Block Copolymers
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.01.2023
|
500 |
|
|
|a Date Revised 20.01.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Nanoscale shape engineering is an essential requirement for the practical use of 2D materials, aiming at precisely customizing optimal structures and properties. In this work, sub-10-nm-scale block copolymer (BCP) self-assembled nanopatterns finely aligned along the atomic edge of 2D flakes, including graphene, MoS2 , and h-BN, are exploited for reliable nanopatterning of 2D materials. The underlying mechanism for the alignment of the self-assembled nanodomains is elucidated based on the wetting layer alternation of the BCP film in the presence of intermediate 2D flakes. The resultant highly aligned nanocylinder templates with remarkably low levels of line edge roughness (LER) and line-width roughness (LWR) yield a sub-10-nm-wide graphene nanoribbon (GNR) array with noticeable switching characteristics (on-to-off ratio up to ≈6 × 104 )
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D materials
|
650 |
|
4 |
|a block copolymers
|
650 |
|
4 |
|a directed self-assembly
|
650 |
|
4 |
|a graphene nanoribbons
|
700 |
1 |
|
|a Jeong, Hyeon U
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yeom, Hye-In
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Kyu Hyo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Geon Gug
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Hee Jae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jong Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Sang-Hee Ko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Hyeong Min
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jaeup U
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Sang Ouk
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 3 vom: 19. Jan., Seite e2207338
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:3
|g day:19
|g month:01
|g pages:e2207338
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207338
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 3
|b 19
|c 01
|h e2207338
|