Construction of an S-Scheme Ag2MoO4/ZnFe2O4 Nanofiber Heterojunction for Enhanced Photoelectrocatalytic Activity under Visible Light Irradiation
The removal of organic dyes and pathogenic bacteria from contaminated water remains a significant challenge. In the present study, S-type heterojunction Ag2MoO4/ZnFe2O4 (AMO/ZFO) composite nanofibers were synthesized by electrospinning and co-precipitation and fabricated into photoanodes. It is foun...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 44 vom: 08. Nov., Seite 13437-13447 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2022
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Coloring Agents Methylene Blue T42P99266K |
Résumé: | The removal of organic dyes and pathogenic bacteria from contaminated water remains a significant challenge. In the present study, S-type heterojunction Ag2MoO4/ZnFe2O4 (AMO/ZFO) composite nanofibers were synthesized by electrospinning and co-precipitation and fabricated into photoanodes. It is found that the constructed S-type heterojunction of AMO/ZFO composites effectively inhibits the recombination of photogenerated carriers, in addition to the benefits of more exposed active sites and a greater specific surface area. When several properties are improved, AMO/ZFO composites exhibit excellent photoelectrocatalytic performance. The results demonstrate that under visible light irradiation, the photoelectrocatalytic degradation rate of AMO/ZFO-3 to methylene blue reached 76.2% within 50 min, and the killing rate of Salmonella was 83.6% within 80 min. The enhanced photoelectrocatalytic activity was due to the synergy of both electrochemical and photocatalytic effects. More importantly, after four testing cycles, AMO/ZFO-3 still has a better ability to kill pathogenic bacteria and degrade organic dyes due to its high stability. This work provides a feasible method for oxidizing organic dyes and pathogenic bacteria |
---|---|
Description: | Date Completed 09.11.2022 Date Revised 15.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c01881 |