Impact-Resistant Hydrogels by Harnessing 2D Hierarchical Structures

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 1 vom: 15. Jan., Seite e2207587
1. Verfasser: Liang, Xiangyu (VerfasserIn)
Weitere Verfasser: Chen, Guangda, Lei, Iek Man, Zhang, Pei, Wang, Zeyu, Chen, Xingmei, Lu, Mengze, Zhang, Jiajun, Wang, Zongbao, Sun, Taolin, Lan, Yang, Liu, Ji
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D lamellar structures ballistic resistance crystalline materials hydrogels impact resistance
Beschreibung
Zusammenfassung:© 2022 Wiley-VCH GmbH.
With the strengthening capacity through harnessing multi-length-scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low-cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze-casting and compression-annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well-defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record-high ballistic energy absorption capability (i.e., 2.1 kJ m-1 ), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low-cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor-like protection circumstances
Beschreibung:Date Completed 05.01.2023
Date Revised 11.01.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202207587