CLAST : Contrastive Learning for Arbitrary Style Transfer

Arbitrary style transfer aims at migrating the style of a reference style painting to a target content image. Existing methods find it challenging to achieve good content fidelity and style migration at the same time. Moreover, they all rely on manually defined content and style, which is of limited...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 25., Seite 6761-6772
Auteur principal: Wang, Xinhao (Auteur)
Autres auteurs: Wang, Wenjing, Yang, Shuai, Liu, Jiaying
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article