Cultivating photosynthetic microorganisms in cooling water waste and urban effluents as a strategy of water regeneration and valorization
Contaminants from cooling water waste (CWW) generated by industries represent an environmental hazard if discharged into aquatic bodies and soil without treatment. Most treatment strategies are energy-demanding and costly; hence, low-cost and sustainable treatment alternative technologies are needed...
Veröffentlicht in: | Environmental technology. - 1993. - 45(2024), 7 vom: 31. Feb., Seite 1249-1258 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Carbohydrate-based biofuels cooling towers cyanobacteria microalgae photobioreactors Water 059QF0KO0R Wastewater Carbohydrates |
Zusammenfassung: | Contaminants from cooling water waste (CWW) generated by industries represent an environmental hazard if discharged into aquatic bodies and soil without treatment. Most treatment strategies are energy-demanding and costly; hence, low-cost and sustainable treatment alternative technologies are needed. The present study proposed cyanobacteria culture as a low-cost biological method to treat cooling water waste (CWW) while simultaneously producing carbohydrates. For this purpose, CWW from a cooling tower was evaluated in different dilutions with domestic wastewater (DW) (DW25% -CWW75%, DW50% -CWW50%, DW25% -CWW75%, DW100%, and CWW100%) (v/v). The CWW provided a high content of inorganic carbon and low content of N and P, which resulted in a high C/N ratio promoting a fast carbohydrate accumulation but low biomass production. In contrast, cultures with higher DW concentrations achieved similar results in 14 days. The best results were obtained with DW25% -CWW75%, achieving up to 52 ± 18% carbohydrate content on day 8, with the highest biomass concentration of 1.7 ± 0.12 g L-1 on day 14. This culture removed >94% of TAN, N-NO3- and P-PO43-, and 84 ± 10.82% of COD. This strategy could be a promising approach to treating CWW and DW from the same industry and producing value-added products and bioenergy |
---|---|
Beschreibung: | Date Completed 29.02.2024 Date Revised 29.02.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2022.2140077 |