First report of Fusarium equiseti causing leaf spots of Bitter gourd (Momordica charantia) in Pakistan

Bitter gourd (Momordica charantia L.) is an important vegetable crop of the Cucurbitaceae family widely cultivated in Pakistan and around the world. In October 2020, a nutrition management trial of Bitter gourd cv. Seminis-200) was conducted on an area of 10,860 sq. ft. (99×110 feet) at the Agricult...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - (2022) vom: 24. Okt.
1. Verfasser: Rehman, Ateeq Ur (VerfasserIn)
Weitere Verfasser: Rauf, Abdul, Ali, Amjad, Shakeel, Muhammad Taimoor, Naqvi, Syed Atif Hasan, Shahid, Muhammad, Umar, Ummad Ud Din
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Causal Agent Crop Type Fungi Pathogen detection Subject Areas Vegetables
LEADER 01000caa a22002652 4500
001 NLM347955908
003 DE-627
005 20240217232133.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-04-22-0786-PDN  |2 doi 
028 5 2 |a pubmed24n1297.xml 
035 |a (DE-627)NLM347955908 
035 |a (NLM)36281019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rehman, Ateeq Ur  |e verfasserin  |4 aut 
245 1 0 |a First report of Fusarium equiseti causing leaf spots of Bitter gourd (Momordica charantia) in Pakistan 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Bitter gourd (Momordica charantia L.) is an important vegetable crop of the Cucurbitaceae family widely cultivated in Pakistan and around the world. In October 2020, a nutrition management trial of Bitter gourd cv. Seminis-200) was conducted on an area of 10,860 sq. ft. (99×110 feet) at the Agricultural Research farm of Bahauddin Zakariya University, Multan (30.2601° N, 71.5158° E), Pakistan. Symptoms of large, brown necrotic leaf spots were observed on the leaves of bitter gourd vines. The disease started from the yellowing of leaves within the reticulate venation and turned brown. Irregular brown leaf spots coalesced to form large necrotic areas followed by foliar chlorosis then wilting that occurred very late. There were no crown rot symptoms although there was slight discoloration of roots and when cut longitudinally, browning of tissues was observed. The disease was assessed visually with 37% incidence which resulted in poor quality and yield in terms of reduced size and yellowing of fruit. Infected vines along with the roots were collected for the isolation of pathogen. A total of 34 leaves and 22 root samples were collected from the field for isolation. The leaf, collar and root portions were cut into 0.5 to 1 cm in length and surface disinfected with 1% sodium hypochlorite (NaOCl) for 2-3 minutes followed by washing twice with autoclaved distilled water and after drying, placed on potato dextrose agar (PDA) medium, and incubated at 25±2 °C for one week. The fungal colonies of fluffy white growth with light orange pigment were isolated. For morphological characterization, a total of 4 pure cultures were isolated from leaves, collar region and root by single spore technique on carnation leaf agar (CLA) medium after 15 days of incubation at 25±2℃. Curved and thick-walled macroconidia with elongated or pointed apical characteristic foot-shaped basal cells were produced in sporodochia. Macroconidia with 5-7 septa measured 22.50-41.80 μm × 2.90-4.20 μm (n = 60). Thick, brown with roughened walls and subglobose ellipsoidal chlamydospores were observed in clumps or chains with the dimension of 5.8 to 10.8 μm (n = 20). On morphological characteristics, the fungus was identified as Fusarium equiseti (Corda) Sacc. according to Leslie and Summerell (2006). Two single spore isolates were used for molecular identification by amplifying ribosomal DNA of the internal transcribed spacer (ITS) region with ITS1/ITS4 primers (White et al. 1990) and for β-tubulin gene region, primers T1/Bt-2b (O'Donnell and Cigelnik, 1997) were used. The obtained sequences were deposited in GenBank with accession numbers MW880179 and MW880198 from the ITS region and BLAST search in GenBank showed 100 and 98.11% alignment with previously published sequences of F. equiseti with accessions OM992323.1and MT558569.1 respectively. Accession number OM867571from the β-tubulin region showed 100% sequence similarity with F. equiseti with accession MN653163.1. For pathogenicity, macroconidia from 2-week-old cultures on CLA medium were harvested to prepare spore suspension (1 × 106 conidia/ml). Koch's postulates were confirmed on nine bitter gourd plants (cv. Seminis-200) by applying spore suspension of fungal inoculum at 3-4 leaf stage separately on leaves by automizer, on collar region after making incision spore suspension was applied and in the root zone, 20ml spore suspension was added whereas distilled water was used as a control with three replications. Plants were kept under controlled conditions in the greenhouse with 65% to 75% humidity and the temperature was maintained at 32±2 °C for one week. After 7-8 days, inoculated plants began to exhibit symptoms of brown, necrotic leaf spots on the leaves of bitter gourd vines followed by yellowing of leaves that eventually turned brown. Roots showed slight discoloration and browning of vascular bundles and finally, the plants wilted after four weeks. while control plants remained symptomless. The symptoms resembled those noticed in the field. The fungus was re-isolated from leaves, collar region and roots, followed by morphological identification, and finally confirmed as F. equiseti. To the best of our knowledge, this is the first report of a leaf spot caused by F. equiseti in a bitter gourd from Pakistan. If the disease is not managed properly, it may cause a drastic effect on yield under favorable environmental conditions. The pathogen may also damage other cucurbitaceous crops cultivated in the area 
650 4 |a Journal Article 
650 4 |a Causal Agent 
650 4 |a Crop Type 
650 4 |a Fungi 
650 4 |a Pathogen detection 
650 4 |a Subject Areas 
650 4 |a Vegetables 
700 1 |a Rauf, Abdul  |e verfasserin  |4 aut 
700 1 |a Ali, Amjad  |e verfasserin  |4 aut 
700 1 |a Shakeel, Muhammad Taimoor  |e verfasserin  |4 aut 
700 1 |a Naqvi, Syed Atif Hasan  |e verfasserin  |4 aut 
700 1 |a Shahid, Muhammad  |e verfasserin  |4 aut 
700 1 |a Umar, Ummad Ud Din  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g (2022) vom: 24. Okt.  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnns 
773 1 8 |g year:2022  |g day:24  |g month:10 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-04-22-0786-PDN  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2022  |b 24  |c 10