Coordination of photosynthetic traits across soil and climate gradients

© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 3 vom: 01. Feb., Seite 856-873
1. Verfasser: Westerband, Andrea C (VerfasserIn)
Weitere Verfasser: Wright, Ian J, Maire, Vincent, Paillassa, Jennifer, Prentice, Iain Colin, Atkin, Owen K, Bloomfield, Keith J, Cernusak, Lucas A, Dong, Ning, Gleason, Sean M, Guilherme Pereira, Caio, Lambers, Hans, Leishman, Michelle R, Malhi, Yadvinder, Nolan, Rachael H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Australia least-cost theory of photosynthesis nutrient-use efficiency optimality theory plant functional traits soil nutrients soil phosphorus trait coordination water-use efficiency mehr... Soil Carbon Dioxide 142M471B3J
LEADER 01000naa a22002652 4500
001 NLM347935052
003 DE-627
005 20231226035015.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16501  |2 doi 
028 5 2 |a pubmed24n1159.xml 
035 |a (DE-627)NLM347935052 
035 |a (NLM)36278893 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Westerband, Andrea C  |e verfasserin  |4 aut 
245 1 0 |a Coordination of photosynthetic traits across soil and climate gradients 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.01.2023 
500 |a Date Revised 15.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a "Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients 
650 4 |a Journal Article 
650 4 |a Australia 
650 4 |a least-cost theory of photosynthesis 
650 4 |a nutrient-use efficiency 
650 4 |a optimality theory 
650 4 |a plant functional traits 
650 4 |a soil nutrients 
650 4 |a soil phosphorus 
650 4 |a trait coordination 
650 4 |a water-use efficiency 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
700 1 |a Wright, Ian J  |e verfasserin  |4 aut 
700 1 |a Maire, Vincent  |e verfasserin  |4 aut 
700 1 |a Paillassa, Jennifer  |e verfasserin  |4 aut 
700 1 |a Prentice, Iain Colin  |e verfasserin  |4 aut 
700 1 |a Atkin, Owen K  |e verfasserin  |4 aut 
700 1 |a Bloomfield, Keith J  |e verfasserin  |4 aut 
700 1 |a Cernusak, Lucas A  |e verfasserin  |4 aut 
700 1 |a Dong, Ning  |e verfasserin  |4 aut 
700 1 |a Gleason, Sean M  |e verfasserin  |4 aut 
700 1 |a Guilherme Pereira, Caio  |e verfasserin  |4 aut 
700 1 |a Lambers, Hans  |e verfasserin  |4 aut 
700 1 |a Leishman, Michelle R  |e verfasserin  |4 aut 
700 1 |a Malhi, Yadvinder  |e verfasserin  |4 aut 
700 1 |a Nolan, Rachael H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 3 vom: 01. Feb., Seite 856-873  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:3  |g day:01  |g month:02  |g pages:856-873 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16501  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 3  |b 01  |c 02  |h 856-873