A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows

When red blood cells (RBCs) experience non-physiologically high stresses, e.g., in medical devices, they can rupture in a process called hemolysis. Directly simulating this process is computationally unaffordable given that the length scales of a medical device are several orders of magnitude larger...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 461(2022) vom: 15. Juli
1. Verfasser: Rydquist, Grant (VerfasserIn)
Weitere Verfasser: Esmaily, Mahdi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Boundary integral method Lagrangian particle tracking Red blood cells Spherical harmonics Stokes flow
LEADER 01000caa a22002652 4500
001 NLM347897827
003 DE-627
005 20240906232113.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2022.111204  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM347897827 
035 |a (NLM)36275186 
035 |a (PII)111204 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rydquist, Grant  |e verfasserin  |4 aut 
245 1 2 |a A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a When red blood cells (RBCs) experience non-physiologically high stresses, e.g., in medical devices, they can rupture in a process called hemolysis. Directly simulating this process is computationally unaffordable given that the length scales of a medical device are several orders of magnitude larger than that of a RBC. To overcome this separation of scales, the present work introduces an affordable computational framework that accurately resolves the stress and deformation of a RBC in a spatially and temporally varying macroscale flow field such as those found in a typical medical device. The underlying idea of the present framework is to treat RBCs as one-way coupled tracers in the macroscale flow by capturing the effect of the flow on their dynamics but neglecting their effect on the flow at the macroscale. As a result, the RBC dynamics are simulated after those of the flow in a postprocessing step by receiving the fluid velocity gradient tensor measured along the RBC trajectory as the input. To resolve the fluid velocity in the immediate vicinity of the RBC as well as the motion of the membrane, we employ the boundary integral method coupled to a structural solver. The governing equations are discretized in space using spherical harmonics, yielding spectral integration accuracy. The predictions produced by this formulation are in good agreement with those obtained from simulations of spherical capsules in shear flows and optical tweezers experiments. The accuracy of the present method is evaluated using unbounded shear flow as a benchmark. Its computational cost grows proportional to p 5, where p is the degree of the spherical harmonic. It also exhibits a fast convergence rate that is approximately O ( p 6 ) for p ⪅ 20 
650 4 |a Journal Article 
650 4 |a Boundary integral method 
650 4 |a Lagrangian particle tracking 
650 4 |a Red blood cells 
650 4 |a Spherical harmonics 
650 4 |a Stokes flow 
700 1 |a Esmaily, Mahdi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 461(2022) vom: 15. Juli  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:461  |g year:2022  |g day:15  |g month:07 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2022.111204  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 461  |j 2022  |b 15  |c 07