Nutrient accumulation and transcriptome patterns during grain development in rice

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 3 vom: 05. Feb., Seite 909-930
1. Verfasser: Ren, Zi-Wen (VerfasserIn)
Weitere Verfasser: Kopittke, Peter M, Zhao, Fang-Jie, Wang, Peng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Growth curve mineral elements redistribution rice grain filling Minerals Soil
Beschreibung
Zusammenfassung:© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rice is an important source of calories and mineral nutrients for more than half of the world's population. The accumulation of essential and toxic mineral elements in rice grain affects its nutritional quality and safety. However, the patterns and processes by which different elements progressively accumulate during grain filling remain largely unknown. In the present study, we investigated temporal changes in dry matter, elemental concentrations, and the transcriptome in the grain of field-grown rice. We also investigated the effects of seed setting rate and the position of the grain within the rice panicle on element accumulation. Three different patterns of accumulation were observed: (i) elements including K, Mn, B, and Ca showed an early accumulation pattern; (ii) dry matter and elements including N, P, S, Mg, Cu, Zn, Mo, As, and Cd showed a mid accumulation pattern; and (iii) elements such as Fe showed a gradual increase pattern. These different accumulation patterns can be explained by the differences in the biogeochemical behavior of the various elements in the soil, as well as differences in plant nutrient redistribution, gene expression, and the sink-source relationship. These results improve our knowledge of the dynamics of elemental accumulation in rice grain and are helpful for identification of functional genes mediating the translocation of elements to grain
Beschreibung:Date Completed 07.02.2023
Date Revised 27.02.2023
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erac426