|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM347816762 |
003 |
DE-627 |
005 |
20250304000552.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202206793
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1159.xml
|
035 |
|
|
|a (DE-627)NLM347816762
|
035 |
|
|
|a (NLM)36267034
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cheng, Simin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultrathin Hydrogel Films toward Breathable Skin-Integrated Electronics
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.01.2023
|
500 |
|
|
|a Date Revised 11.01.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a On-skin electronics that offer revolutionary capabilities in personalized diagnosis, therapeutics, and human-machine interfaces require seamless integration between the skin and electronics. A common question remains whether an ideal interface can be introduced to directly bridge thin-film electronics with the soft skin, allowing the skin to breathe freely and the skin-integrated electronics to function stably. Here, an ever-thinnest hydrogel is reported that is compliant to the glyphic lines and subtle minutiae on the skin without forming air gaps, produced by a facile cold-lamination method. The hydrogels exhibit high water-vapor permeability, allowing nearly unimpeded transepidermal water loss and free breathing of the skin underneath. Hydrogel-interfaced flexible (opto)electronics without causing skin irritation or accelerated device performance deterioration are demonstrated. The long-term applicability is recorded for over one week. With combined features of extreme mechanical compliance, high permeability, and biocompatibility, the ultrathin hydrogel interface promotes the general applicability of skin-integrated electronics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a flexible (opto)electronics
|
650 |
|
4 |
|a mechanical compliance
|
650 |
|
4 |
|a skin-integrated electronics
|
650 |
|
4 |
|a ultrathin hydrogels
|
650 |
|
4 |
|a water-vapor permeability
|
650 |
|
7 |
|a hydrogel film
|2 NLM
|
650 |
|
7 |
|a Methylgalactosides
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
700 |
1 |
|
|a Lou, Zirui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Haotian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zitian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Chuanfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fukuda, Kenjiro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Shaohua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Guoqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Someya, Takao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Hui-Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Xiaomin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 1 vom: 14. Jan., Seite e2206793
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:1
|g day:14
|g month:01
|g pages:e2206793
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202206793
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 1
|b 14
|c 01
|h e2206793
|