C2FNet : A Coarse-to-Fine Network for Multi-View 3D Point Cloud Generation

Generation of a 3D model of an object from multiple views has a wide range of applications. Different parts of an object would be accurately captured by a particular view or a subset of views in the case of multiple views. In this paper, a novel coarse-to-fine network (C2FNet) is proposed for 3D poi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 6707-6718
1. Verfasser: Lei, Jianjun (VerfasserIn)
Weitere Verfasser: Song, Jiahui, Peng, Bo, Li, Wanqing, Pan, Zhaoqing, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347753221
003 DE-627
005 20231226034604.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3203213  |2 doi 
028 5 2 |a pubmed24n1159.xml 
035 |a (DE-627)NLM347753221 
035 |a (NLM)36260594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lei, Jianjun  |e verfasserin  |4 aut 
245 1 0 |a C2FNet  |b A Coarse-to-Fine Network for Multi-View 3D Point Cloud Generation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generation of a 3D model of an object from multiple views has a wide range of applications. Different parts of an object would be accurately captured by a particular view or a subset of views in the case of multiple views. In this paper, a novel coarse-to-fine network (C2FNet) is proposed for 3D point cloud generation from multiple views. C2FNet generates subsets of 3D points that are best captured by individual views with the support of other views in a coarse-to-fine way, and then fuses these subsets of 3D points to a whole point cloud. It consists of a coarse generation module where coarse point clouds are constructed from multiple views by exploring the cross-view spatial relations, and a fine generation module where the coarse point cloud features are refined under the guidance of global consistency in appearance and context. Extensive experiments on the benchmark datasets have demonstrated that the proposed method outperforms the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Song, Jiahui  |e verfasserin  |4 aut 
700 1 |a Peng, Bo  |e verfasserin  |4 aut 
700 1 |a Li, Wanqing  |e verfasserin  |4 aut 
700 1 |a Pan, Zhaoqing  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 19., Seite 6707-6718  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:19  |g pages:6707-6718 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3203213  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 19  |h 6707-6718