Deep Learning for Face Anti-Spoofing : A Survey

Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, early-stage FAS methods based on handcrafted features become unreliable due to the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 5609-5631
1. Verfasser: Yu, Zitong (VerfasserIn)
Weitere Verfasser: Qin, Yunxiao, Li, Xiaobai, Zhao, Chenxu, Lei, Zhen, Zhao, Guoying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347753108
003 DE-627
005 20231226034603.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3215850  |2 doi 
028 5 2 |a pubmed24n1159.xml 
035 |a (DE-627)NLM347753108 
035 |a (NLM)36260579 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Zitong  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning for Face Anti-Spoofing  |b A Survey 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, early-stage FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., '0' for bonafide versus '1' for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects 
650 4 |a Journal Article 
700 1 |a Qin, Yunxiao  |e verfasserin  |4 aut 
700 1 |a Li, Xiaobai  |e verfasserin  |4 aut 
700 1 |a Zhao, Chenxu  |e verfasserin  |4 aut 
700 1 |a Lei, Zhen  |e verfasserin  |4 aut 
700 1 |a Zhao, Guoying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 19. Mai, Seite 5609-5631  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:19  |g month:05  |g pages:5609-5631 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3215850  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 19  |c 05  |h 5609-5631