Co-Clustering on Bipartite Graphs for Robust Model Fitting

Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipart...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 18., Seite 6605-6620
Auteur principal: Lin, Shuyuan (Auteur)
Autres auteurs: Luo, Hailing, Yan, Yan, Xiao, Guobao, Wang, Hanzi
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM347715486
003 DE-627
005 20250303235105.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3214073  |2 doi 
028 5 2 |a pubmed25n1158.xml 
035 |a (DE-627)NLM347715486 
035 |a (NLM)36256709 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Shuyuan  |e verfasserin  |4 aut 
245 1 0 |a Co-Clustering on Bipartite Graphs for Robust Model Fitting 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, graph-based methods have been widely applied to model fitting. However, in these methods, association information is invariably lost when data points and model hypotheses are mapped to the graph domain. In this paper, we propose a novel model fitting method based on co-clustering on bipartite graphs (CBG) to estimate multiple model instances in data contaminated with outliers and noise. Model fitting is reformulated as a bipartite graph partition behavior. Specifically, we use a bipartite graph reduction technique to eliminate some insignificant vertices (outliers and invalid model hypotheses), thereby improving the reliability of the constructed bipartite graph and reducing the computational complexity. We then use a co-clustering algorithm to learn a structured optimal bipartite graph with exact connected components for partitioning that can directly estimate the model instances (i.e., post-processing steps are not required). The proposed method fully utilizes the duality of data points and model hypotheses on bipartite graphs, leading to superior fitting performance. Exhaustive experiments show that the proposed CBG method performs favorably when compared with several state-of-the-art fitting methods 
650 4 |a Journal Article 
700 1 |a Luo, Hailing  |e verfasserin  |4 aut 
700 1 |a Yan, Yan  |e verfasserin  |4 aut 
700 1 |a Xiao, Guobao  |e verfasserin  |4 aut 
700 1 |a Wang, Hanzi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 18., Seite 6605-6620  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:18  |g pages:6605-6620 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3214073  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 18  |h 6605-6620