Sampling Agnostic Feature Representation for Long-Term Person Re-Identification

Person re-identification is a problem of identifying individuals across non-overlapping cameras. Although remarkable progress has been made in the re-identification problem, it is still a challenging problem due to appearance variations of the same person as well as other people of similar appearanc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 6412-6423
1. Verfasser: Yang, Seongyeop (VerfasserIn)
Weitere Verfasser: Kang, Byeongkeun, Lee, Yeejin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347715338
003 DE-627
005 20231226034507.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3207024  |2 doi 
028 5 2 |a pubmed24n1159.xml 
035 |a (DE-627)NLM347715338 
035 |a (NLM)36256692 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Seongyeop  |e verfasserin  |4 aut 
245 1 0 |a Sampling Agnostic Feature Representation for Long-Term Person Re-Identification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2022 
500 |a Date Revised 20.10.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Person re-identification is a problem of identifying individuals across non-overlapping cameras. Although remarkable progress has been made in the re-identification problem, it is still a challenging problem due to appearance variations of the same person as well as other people of similar appearance. Some prior works solved the issues by separating features of positive samples from features of negative ones. However, the performances of existing models considerably depend on the characteristics and statistics of the samples used for training. Thus, we propose a novel framework named sampling independent robust feature representation network (SirNet) that learns disentangled feature embedding from randomly chosen samples. A carefully designed sampling independent maximum discrepancy loss is introduced to model samples of the same person as a cluster. As a result, the proposed framework can generate additional hard negatives/positives using the learned features, which results in better discriminability from other identities. Extensive experimental results on large-scale benchmark datasets verify that the proposed model is more effective than prior state-of-the-art models 
650 4 |a Journal Article 
700 1 |a Kang, Byeongkeun  |e verfasserin  |4 aut 
700 1 |a Lee, Yeejin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 6412-6423  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:6412-6423 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3207024  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 6412-6423