|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347714587 |
003 |
DE-627 |
005 |
20231226034506.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.2c02428
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1159.xml
|
035 |
|
|
|a (DE-627)NLM347714587
|
035 |
|
|
|a (NLM)36256617
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shah, Najam Ul Hassan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mechanism of Oil-in-Liquid Metal Emulsion Formation
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Gallium-based liquid metals (LMs) combine metallic properties with the deformability of a liquid, which makes them promising candidates for a variety of applications. To broaden the range of physical and chemical properties, a variety of solid additives have been incorporated into the LMs in the literature. In contrast, only a handful of secondary fluids have been incorporated into LMs to create foams (gas-in-LM) or emulsions (liquid-in-LM). LM foams readily form through mixing of LM in air, facilitated by the formation of a native oxide on the LM. In contrast, LM breaks up into microdroplets when mixed with a secondary liquid such as silicone oil. Stable silicone oil-in-LM emulsions form only during mixing of the oil with LM foam. In this work, we investigate the fundamental mechanism underlying this process. We describe two possible microscale mechanisms for emulsion formation: (1) oil replacing air in the foam or (2) oil creating additional features in the foam. The associated foam-to-emulsion density difference demonstrates that emulsions predominantly form through the addition of oxide-covered silicone oil capsules to the LM foam. We demonstrate this through density and surface wettability measurements and multiscale imaging of LM foam mixed with varied silicone oil contents in air or nitrogen environments. We also demonstrate the presence of a continuous silicone oil film on the emulsion surface and that this oil film prevents the embrittlement of contacting aluminum
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kanetkar, Shreyas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Uppal, Aastha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dickey, Michael D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Robert Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rykaczewski, Konrad
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 38(2022), 43 vom: 01. Nov., Seite 13279-13287
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:38
|g year:2022
|g number:43
|g day:01
|g month:11
|g pages:13279-13287
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.2c02428
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 38
|j 2022
|e 43
|b 01
|c 11
|h 13279-13287
|