Thermal degradation and combustion properties of most popular synthetic biodegradable polymers

Various products made from biodegradable polymers have been increasing rapidly in the market since the use of non-biodegradable materials has been banned, particularly for the disabled packaging materials. Burning remains the most popular method that is increasingly used in treating city wastes. The...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 41(2023), 2 vom: 18. Feb., Seite 431-441
1. Verfasser: Chen, Hongmei (VerfasserIn)
Weitere Verfasser: Chen, Fengyi, Chen, Hui, Liu, Hongsheng, Chen, Ling, Yu, Long
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Thermal degradation biodegradable polymer combustion pyrolysis Polymers Polyesters
Beschreibung
Zusammenfassung:Various products made from biodegradable polymers have been increasing rapidly in the market since the use of non-biodegradable materials has been banned, particularly for the disabled packaging materials. Burning remains the most popular method that is increasingly used in treating city wastes. The impact of these polymers on environmental during thermal degradation and combustion is an important issue for city waste management. In this work, the thermal degradation and combustion behaviours of the most popular synthetic biodegradable polymers in the market, poly(lactide acid) (PLA), poly(e-caprolactone) (PCL), poly(butylene succinate) (PBS), poly(butylene adipate-co-terephthalate) (PBAT) and polyhydroxyalkenoates (PHA), are investigated. Both isothermal and non-isothermal thermal decomposition in oxygen and nitrogen environment were studied using thermogravimetric analysis combining with differential scanning calorimeter and coupled with Fourier transform infrared spectroscopy and gas chromatograph/mass spectroscopy. The combustion behaviour was investigated by a combustion colorimeter. The study results show that thermal degradation temperatures are PCL > PBS > PLA > PBAT > PHA. The thermal decomposition of all the polyesters started from scission reaction (cis-elimination), and then a stereoselective cis-elimination, which resulted in the formation of trans-crotonic acid and its oligomers. They all decomposed into CO2 and water in excess oxygen environment above 800°C. Various chemical products with smaller molecules were detected under oxygen-free conditions, including oligomers and unsaturated carboxylic acid. The order of the total heat release of the materials from high to low is as follows: PHA > PCL > PBAT > PBS > PLA. The combustion values of these polyesters are lower than those of polyolefins; thus, they will not damage furnace used currently. The results provide some important and useful data for managing these new city waste
Beschreibung:Date Completed 13.02.2023
Date Revised 12.09.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X221129054