A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering

© Tanny Chavez et al. 2022.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 55(2022), Pt 5 vom: 01. Okt., Seite 1277-1288
1. Verfasser: Chavez, Tanny (VerfasserIn)
Weitere Verfasser: Roberts, Eric J, Zwart, Petrus H, Hexemer, Alexander
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray scattering deep learning image inpainting mixed-scale dense networks tunable U-Nets
LEADER 01000caa a22002652c 4500
001 NLM347644759
003 DE-627
005 20250303234058.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576722007105  |2 doi 
028 5 2 |a pubmed25n1158.xml 
035 |a (DE-627)NLM347644759 
035 |a (NLM)36249508 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chavez, Tanny  |e verfasserin  |4 aut 
245 1 2 |a A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Tanny Chavez et al. 2022. 
520 |a The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980 
650 4 |a Journal Article 
650 4 |a X-ray scattering 
650 4 |a deep learning 
650 4 |a image inpainting 
650 4 |a mixed-scale dense networks 
650 4 |a tunable U-Nets 
700 1 |a Roberts, Eric J  |e verfasserin  |4 aut 
700 1 |a Zwart, Petrus H  |e verfasserin  |4 aut 
700 1 |a Hexemer, Alexander  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 55(2022), Pt 5 vom: 01. Okt., Seite 1277-1288  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnas 
773 1 8 |g volume:55  |g year:2022  |g number:Pt 5  |g day:01  |g month:10  |g pages:1277-1288 
856 4 0 |u http://dx.doi.org/10.1107/S1600576722007105  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2022  |e Pt 5  |b 01  |c 10  |h 1277-1288